STDP depends on dendritic synapse location (Letzkus et al. 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:108459
This model was published in Letzkus, Kampa & Stuart (2006) J Neurosci 26(41):10420-9. The simulation creates several plots showing voltage and NMDA current and conductance changes at different apical dendritic locations in layer 5 pyramidal neurons during STDP induction protocols. Created by B. Kampa (2006).
Reference:
1 . Letzkus JJ, Kampa BM, Stuart GJ (2006) Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 26:10420-9 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I L high threshold; I T low threshold; I A; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Bursting; Active Dendrites; Synaptic Plasticity; Long-term Synaptic Plasticity; Action Potentials; STDP; Calcium dynamics;
Implementer(s): Kampa, Bjorn M [Bjoern.Kampa at anu.edu.au];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; NMDA; I L high threshold; I T low threshold; I A; I M; I K,Ca; I Sodium; I Calcium; I Potassium; Glutamate;
/
LetzkusEtAl2006
mod
ca.mod *
cad.mod
epsp.mod *
h.mod
it2.mod *
kaprox.mod *
kca.mod *
km.mod *
kv.mod *
na.mod *
NMDA_Mg.mod
release_BMK.mod *
                            
COMMENT

changed from (AS Oct0899)
ca.mod to lead to thalamic ca current inspired by destexhe and huguenrd
Uses fixed eca instead of GHK eqn


ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX it2
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gcabar
	RANGE minf, hinf, mtau, htau, inactF, actF
	GLOBAL  vshift,vmin,vmax, v12m, v12h, vwm, vwh, am, ah, vm1, vm2, vh1, vh2, wm1, wm2, wh1, wh2
}

PARAMETER {
	gcabar = 0.0008 (mho/cm2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)
						 
	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)

	v12m=50         	(mV)
	v12h=78         	(mV)
	vwm =7.4         	(mV)
	vwh=5.0         	(mV)
	am=3         	(mV)
	ah=85         	(mV)
	vm1=25         	(mV)
	vm2=100         	(mV)
	vh1=46         	(mV)
	vh2=405         	(mV)
	wm1=20         	(mV)
	wm2=15         	(mV)
	wh1=4         	(mV)
	wh2=50         	(mV)


}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
} 

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states
        gca = gcabar*m*m*h
	ica = gca * (v - eca)
} 

LOCAL mexp, hexp

PROCEDURE states() {
        trates(v+vshift)      
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
	VERBATIM
	return 0;
	ENDVERBATIM
}


PROCEDURE trates(v) {  
                      
        LOCAL tinc
        TABLE minf, mexp, hinf, hexp
	DEPEND dt	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

        tinc = -dt 

        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(v_) {  
        LOCAL  a, b

	minf = 1.0 / ( 1 + exp(-(v_+v12m)/vwm) )
	hinf = 1.0 / ( 1 + exp((v_+v12h)/vwh) )

	mtau = ( am + 1.0 / ( exp((v_+vm1)/wm1) + exp(-(v_+vm2)/wm2) ) ) 
	htau = ( ah + 1.0 / ( exp((v_+vh1)/wh1) + exp(-(v_+vh2)/wh2) ) ) 
}


Loading data, please wait...