Broadening of activity with flow across neural structures (Lytton et al. 2008)

 Download zip file 
Help downloading and running models
Accession:116830
"Synfire chains have long been suggested as a substrate for perception and information processing in the nervous system. However, embedding activation chains in a densely connected nervous matrix risks spread of signal that will obscure or obliterate the message. We used computer modeling and physiological measurements in rat hippocampus to assess this problem of activity broadening. We simulated a series of neural modules with feedforward propagation and random connectivity within each module and from one module to the next. ..."
Reference:
1 . Lytton WW, Orman R, Stewart M (2008) Broadening of activity with flow across neural structures. Perception 37:401-7 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Temporal Pattern Generation; Spatio-temporal Activity Patterns;
Implementer(s): Lytton, William [bill.lytton at downstate.edu];
: $Id: nstim.mod,v 1.23 2005/08/24 18:57:38 billl Exp $

NEURON	{ 
  ARTIFICIAL_CELL NStim
  RANGE interval, number, start, end
  RANGE noise,type,id
}

PARAMETER {
  interval	= 10 (ms) <1e-9,1e9>: time between spikes (msec)
  number	= 10 <0,1e9>	: number of spikes
  start		= 50 (ms)	: start of first spike
  noise		= 0 <0,1>	: amount of randomeaness (0.0 - 1.0)
  end		= 1e9 (ms)	: time to terminate train
}

ASSIGNED {
  event (ms)
  on
  endt (ms)
  type
  id
}

CONSTRUCTOR {
  VERBATIM 
  { if (ifarg(2)) { id= *getarg(2); } else { id= -1; }
    if (ifarg(3)) { type= *getarg(3); } else { type= 1; }
  }
  ENDVERBATIM
}

PROCEDURE seed (x) {
  set_seed(x)
}

INITIAL {
  on = 0
  if (noise < 0) { noise = 0 }
  if (noise > 1) { noise = 1 }
  if (interval <= 0.) { interval = .01 (ms) }
  if (start>=0 && number>0 && end>0) {
    event = start + invl(interval) - interval*(1. - noise)
    if (event < 0) { event = 0 }
    net_send(event, 3)
  }
}	

PROCEDURE init_sequence (t(ms)) {
  if (number > 0) {
    on = 1
    event = t
    endt = t + 1e-6 + interval*(number-1)
  }
}

FUNCTION invl (mean (ms)) (ms) {
  if (noise == 0) {
    invl = mean
  } else {
    invl = (1. - noise)*mean + noise*mean*exprand(1)
  }
}

NET_RECEIVE (w) {
  if (flag == 0) { : external event
    if (w > 0 && on == 0) { : turn on spike sequence
      init_sequence(t)
      net_send(0, 1)
    } else if (w < 0 && on == 1) { : turn off spiking
      on = 0
    }
  }
  if (flag == 3) { : from INITIAL
    if (on == 0) {
      init_sequence(t)
      net_send(0, 1)
    }
  }
  if (flag == 1 && on == 1) {
    net_event(t)
    event = event + invl(interval)
    if (event > endt || event > end) {
      on = 0
    } else {
      net_send(event - t, 1)
    }
  }
}

FUNCTION fflag () { fflag=1 }

Loading data, please wait...