Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124043
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
Reference:
1 . Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium; Gaba; Glutamate;
/
larkumEtAl2009_2
readme.html
ampa.mod
cad2.mod
glutamate.mod *
h.mod *
h2.mod
hh3.mod *
ih.mod
it2.mod *
kap.mod
kca.mod *
kdf.mod
Kdr.mod *
kdr2.mod *
km.mod *
SlowCa.mod *
0.50764
0.55472
070603c2.cll
apic.ses
apical_simulation.hoc
layerV.cll
mosinit.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
screenshot5.jpg
screenshot6.jpg
                            
COMMENT

changed from (AS Oct0899)
ca.mod to lead to thalamic ca current inspired by destexhe and huguenrd
Uses fixed eca instead of GHK eqn


ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX it2
	USEION ca READ eca WRITE ica
	RANGE m, h, gca, gcabar
	RANGE minf, hinf, mtau, htau, inactF, actF
	GLOBAL  vshift,vmin,vmax, v12m, v12h, vwm, vwh, am, ah, vm1, vm2, vh1, vh2, wm1, wm2, wh1, wh2
}

PARAMETER {
	gcabar = 0.0008 (mho/cm2)	: 0.12 mho/cm2
	vshift = 0	(mV)		: voltage shift (affects all)

	cao  = 2.5	(mM)	        : external ca concentration
	cai		(mM)
						 
	v 		(mV)
	dt		(ms)
	celsius		(degC)
	vmin = -120	(mV)
	vmax = 100	(mV)

	v12m=50         	(mV)
	v12h=78         	(mV)
	vwm =7.4         	(mV)
	vwh=5.0         	(mV)
	am=3         	(mV)
	ah=85         	(mV)
	vm1=25         	(mV)
	vm2=100         	(mV)
	vh1=46         	(mV)
	vh2=405         	(mV)
	wm1=20         	(mV)
	wm2=15         	(mV)
	wh1=4         	(mV)
	wh2=50         	(mV)


}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
	PI	= (pi) (1)
} 

ASSIGNED {
	ica 		(mA/cm2)
	gca		(pS/um2)
	eca		(mV)
	minf 		hinf
	mtau (ms)	htau (ms)
	tadj
}
 

STATE { m h }

INITIAL { 
	trates(v+vshift)
	m = minf
	h = hinf
}

BREAKPOINT {
        SOLVE states
        gca = gcabar*m*m*h
	ica = gca * (v - eca)
} 

LOCAL mexp, hexp

PROCEDURE states() {
        trates(v+vshift)      
        m = m + mexp*(minf-m)
        h = h + hexp*(hinf-h)
	VERBATIM
	return 0;
	ENDVERBATIM
}


PROCEDURE trates(v) {  
                      
        LOCAL tinc
        TABLE minf, mexp, hinf, hexp
	DEPEND dt	
	FROM vmin TO vmax WITH 199

	rates(v): not consistently executed from here if usetable == 1

        tinc = -dt 

        mexp = 1 - exp(tinc/mtau)
        hexp = 1 - exp(tinc/htau)
}


PROCEDURE rates(v_) {  
        LOCAL  a, b

	minf = 1.0 / ( 1 + exp(-(v_+v12m)/vwm) )
	hinf = 1.0 / ( 1 + exp((v_+v12h)/vwh) )

	mtau = ( am + 1.0 / ( exp((v_+vm1)/wm1) + exp(-(v_+vm2)/wm2) ) ) 
	htau = ( ah + 1.0 / ( exp((v_+vh1)/wh1) + exp(-(v_+vh2)/wh2) ) ) 
}


Loading data, please wait...