Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124043
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
Reference:
1 . Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium; Gaba; Glutamate;
/
larkumEtAl2009_2
readme.html
ampa.mod
cad2.mod
glutamate.mod *
h.mod *
h2.mod
hh3.mod *
ih.mod
it2.mod *
kap.mod
kca.mod *
kdf.mod
Kdr.mod *
kdr2.mod *
km.mod *
SlowCa.mod *
0.50764
0.55472
070603c2.cll
apic.ses
apical_simulation.hoc
layerV.cll
mosinit.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
screenshot5.jpg
screenshot6.jpg
                            
TITLE Potasium dr type current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 

NEURON { 
	SUFFIX kdr
	USEION k READ ek WRITE ik
	RANGE gbar, ik
}

PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v ek 		(mV)  
}
 
ASSIGNED { 
	ik 		(mA/cm2) 
	minf 		(1)
	mtau 		(ms) 
}
 
STATE {
	m
}

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gbar * m * m * m * m * ( v - ek ) 
}
 
INITIAL { 
	settables(v) 
	m = minf
	m = 0
}
 
DERIVATIVE states { 
	settables(v) 
	m' = ( minf - m ) / mtau 
}

UNITSOFF 

PROCEDURE settables(v) { 
	TABLE minf, mtau FROM -120 TO 40 WITH 641

	minf  = 1 / ( 1 + exp( ( -v - 29.5 ) / 10 ) )
	if( v < -10.0 ) {
		mtau = 0.25 + 4.35 * exp( ( v + 10 ) / 10 )
	}else{
		mtau = 0.25 + 4.35 * exp( ( -v - 10 ) / 10 )
	}
}

UNITSON

Loading data, please wait...