Dentate Gyrus Feed-forward inhibition (Ferrante et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124291
In this paper, the model was used to show how that FFI can change a steeply sigmoidal input-output (I/O) curve into a double-sigmoid typical of buffer systems.
Reference:
1 . Ferrante M, Migliore M, Ascoli GA (2009) Feed-forward inhibition as a buffer of the neuronal input-output relation. Proc Natl Acad Sci U S A 106:18004-9 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule GLU cell; Dentate gyrus MOPP cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Activity Patterns; Ion Channel Kinetics; Synchronization; Spatio-temporal Activity Patterns; Action Potentials; Noise Sensitivity;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Ferrante, Michele [mferr133 at bu.edu]; Ascoli, Giorgio A [ascoli at gmu.edu];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; Gaba; Glutamate;
/
FFI
MOPP_Fig_1B_left
ichan2.mod *
kaprox.mod
kdrca1.mod
na3n.mod
Fig_1B_left.hoc
fixnseg.hoc *
mosinit.hoc
n257-noaxon.hoc
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.5  (1)
	nmax=10  (1)
	q10=1
	sh = 10
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax/qt}
}















Loading data, please wait...