CA1 pyramidal neuron to study INaP properties and repetitive firing (Uebachs et al. 2010)

 Download zip file 
Help downloading and running models
Accession:125152
A model of a CA1 pyramidal neuron containing a biophysically realistic morphology and 15 distributed voltage and Ca2+-dependent conductances. Repetitive firing is modulated by maximal conductance and the voltage dependence of the persistent Na+ current (INaP).
Reference:
1 . Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H (2010) Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 30:8489-501 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Epilepsy;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I p,q; I A; I K,leak; I M; I K,Ca; I CAN; I Calcium; ATP-senstive potassium current;
UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)


    (molar) = (1/liter)
    (mM) = (millimolar)

	F = 96485 (coul)
	R = 8.3134 (joule/degC)
}

PARAMETER {
	v (mV)
	celsius 		(degC)
	PcanpqBar=.000154 (cm/s)
	ki=.00002 (mM)
	cai=5.e-5 (mM)
	cao = 10  (mM)
	q10m=11.45
	q10Ampl=2.1
}


NEURON {
	SUFFIX CAnpq
	USEION ca READ cai,cao WRITE ica
        RANGE PcanpqBar
        GLOBAL minf,taum
}

STATE {
	m
}

ASSIGNED {
	ica (mA/cm2)
        Pcanpq  (cm/s) 
        minf
        taum
}

INITIAL {
        rates(v)
        m = minf
}

UNITSOFF
BREAKPOINT {
	LOCAL qAmpl
	
	qAmpl = q10Ampl^((celsius - 21)/10)
	
	SOLVE states METHOD cnexp
	Pcanpq = qAmpl*PcanpqBar*m*m
	ica = Pcanpq*ghk(v,cai,cao)

}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL a

        a=2*F*v/(R*(celsius+273.15)*1000)
	
        ghk=2*F/1000*(co - ci*exp(a))*func(a)
}


FUNCTION func(a) {
	if (fabs(a) < 1e-4) {
		func = -1 + a/2
	}else{
		func = a/(1-exp(a))
	}
}

FUNCTION alpm(v(mV)) {
	:TABLE FROM -150 TO 150 WITH 200
	alpm = 0.1967*(-1.0*(v-15)+19.88)/(exp((-1.0*(v-15)+19.88)/10.0)-1.0)
}

FUNCTION betm(v(mV)) {
	:TABLE FROM -150 TO 150 WITH 200
	betm = 0.046*exp(-(v-15)/20.73)
}




DERIVATIVE states {    
        rates(v)
        m' = (minf - m)/taum
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a, qm
	
        TABLE taum, minf FROM -150 TO 150 WITH 3000
        
        qm = q10m^((celsius - 22)/10)
        a = alpm(v)
        taum = 1/((a + betm(v))*qm)
	

        minf = 1/(1+exp(-(v+11)/5.7)) ^0.5 
}

UNITSON











Loading data, please wait...