High frequency oscillations in a hippocampal computational model (Stacey et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:135902
"... Using a physiological computer model of hippocampus, we investigate random synaptic activity (noise) as a potential initiator of HFOs (high-frequency oscillations). We explore parameters necessary to produce these oscillations and quantify the response using the tools of stochastic resonance (SR) and coherence resonance (CR). ... Our results show that, under normal coupling conditions, synaptic noise was able to produce gamma (30–100 Hz) frequency oscillations. Synaptic noise generated HFOs in the ripple range (100–200 Hz) when the network had parameters similar to pathological findings in epilepsy: increased gap junctions or recurrent synaptic connections, loss of inhibitory interneurons such as basket cells, and increased synaptic noise. ... We propose that increased synaptic noise and physiological coupling mechanisms are sufficient to generate gamma oscillations and that pathologic changes in noise and coupling similar to those in epilepsy can produce abnormal ripples."
Reference:
1 . Stacey WC, Lazarewicz MT, Litt B (2009) Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. J Neurophysiol 102:2342-57 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; Hippocampus CA1 basket cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Stacey, William [wstacey at med.umich.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA1 interneuron oriens alveus GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I h;
// Cell name, Number of cells, Low level of the soma injected current, 
// High level of the soma injected current, Standard Deviation of the soma injected current,
// Low level of the dendrite injected current, 
// High level of the dendrite injected current, Standard Deviation of the dendrite injected current,
// units 0-pA 1-uA/cm2
// OLM may provide theta rhythm synchronization across lamellae, thus establishing a common ‘‘frame rate’’. (Berzhanskaya 06)
//Pyr,	80,	0,		0,		94.2, 	 	217,	236,	94.2,	0 //makes loads of spikes
//Pyr,	80,	0,		0,		94.2, 	 	100,	120,	94.2,	0 //makes no spikes except 101-120, 222-241, 343-362, 464-483 at 1.35 or so (OLM cells)
//the next two are the basic start ups, was 0,0,94.2, 180,180, 94.2,0 but also had random delayed start that I 
//never saw (up to 750 ms).  So I stopped delay and now it's pacemaking, so I turned it off
Pyr,	80,	0,		0,		4.2, 	 	18,	18,	4.2,	0
Bask,	20,	0.157,	0.157,	0.0,		0,		0,		0,		1
OLM,	0,	-1,		-1,		2.6,		0,		0,		0,		1
//turned off the OLM 7/8/08 was OLM 20

Loading data, please wait...