ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/138379.

Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)

 Download zip file 
Help downloading and running models
Accession:138379
"Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using 9 columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. ..."
Reference:
1 . Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Oscillations; Synchronization; Laminar Connectivity;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; Gaba; Gaba; Glutamate;
/
fdemo
readme.txt
intf6_.mod
misc.mod *
nstim.mod *
stats.mod *
vecst.mod
col.hoc
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc
finish_run.hoc
grvec.hoc *
init.hoc *
labels.hoc *
local.hoc *
misc.h
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
python.hoc *
pywrap.hoc *
run.hoc
setup.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
// $Id: network.hoc,v 1.131 2011/02/17 05:30:16 samn Exp $

//* Numbers and connectivity params

declare("colW",3,"colH",3,"torus",1)
declare("numcols",colW*colH)
declare("dbgcols",0) // whether to debug columns by making them have the same wiring and inputs
declare("colr",2) // maximal trans-column projection distance; 0 within col; 1 next col etc
declare("colnq","o[5]","lcol",new List())
{sprint(tstr,"o[%d]",numcols) declare("col",tstr)}
{sprint(tstr,"o[%d][%d]",colH,colW) declare("gcol",tstr)} // 2D column grid
double div[CTYPi][CTYPi][colr+1]//div[i][j]==# of outputs from type i->j
double wmat[CTYPi][CTYPi][STYPi][colr+1] // wmat[i][j][k]==weight from type i->j for synapse k
double delm[CTYPi][CTYPi]//avg. delay from type i->j
double deld[CTYPi][CTYPi]//delay variance from type i->j
double conv[CTYPi][CTYPi][colr+1]
dosetpmat=name_declared("pmat")==0
{sprint(tstr,"d[%d][%d][%d]",CTYPi,CTYPi,colr+1) declare("pmat",tstr)}
double prumat[CTYPi][CTYPi] //pruning matrix:prumat[i][j] specifies ratio (0-1) of synapses to prune
double sprmat[CTYPi][CTYPi] //sprouting matrix:sprmat[i][j] specifies ratio (0-1) to sprout i->j pathway with
double synloc[CTYPi][CTYPi]//location of synapses

declare("EEGain",4*15/11,"EIGain",15,"IEGain",4*15/11,"IIGain",4*15/11)
declare("NMAMR",0.1,"EENMGain",1,"EIGainInterC",0.125,"EEGainInterC",0.325*0.5)

//* prdiv() - print div
proc prdiv () { local ii,jj
  for ii=0,CTYPi-1 for jj=0,CTYPi-1 if(div[ii][jj][0]) {
    printf("div[%s][%s][0]=%g\n",CTYP.o(ii).s,CTYP.o(jj).s,div[ii][jj][0])
  }
}

// %con (con/pre) = %div (div/post)
DEAD_DIV_INTF6=0
declare("jcn",1)
declare("disinhib",0) //iff==1 , turn off inhibition, by setting wmat[I%d][...]==0 in inhiboff()
declare("scale",1)//16//8//4
declare("pmatscale",1/scale) // scale for pmat - allows keeping it fixed while changing # of cells in network

batch_flag=declare("dstr",datestr,"setdviPT",NORM)
declare("params","not batch","ofile",output_file)
declare("dvseed",534023) // seed for wiring

dosetcpercol=name_declared("cpercol")==0 // whether to set values in cpercol or use user-supplied values
{sprint(tstr,"d[%d]",CTYPi) declare("cpercol",tstr)} // cells of a specific type per column
declare("vcpercol",new Vector(CTYPi))
declare("E5BNumF",1,"E5RNumF",1) // factors for # of E5 cells
declare("newkmjnums",0) // use #s based on KMJ #s in  /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V

declare("delmscale",1) // scale delm values by this #

//* setcpercol - set # of cells per column
proc setcpercol () { local i // (/u/samn/vcsim/notebook.dol_1:24562)(notebook.dol_1:24492)
  if(dosetcpercol) { // if user didn't supply values (default), set # of cells of a type per column
    if(newkmjnums) {

      // based on KMJ #s in  /u/samn/vcsim/data/Cell_Numbers.xlsx columns R, T, V

      cpercol[E2] = 169 * scale
      cpercol[I2] = 48 * scale
      cpercol[I2L] = 8 * scale

      cpercol[E4] = 83 * scale
      cpercol[I4] = 24 * scale
      cpercol[I4L] = 4 * scale

      cpercol[E5R] = 93 * scale
      cpercol[E5B] = 32 * scale
      cpercol[I5] = 36 * scale
      cpercol[I5L] = 6 * scale

      cpercol[E6] = 218 * scale
      cpercol[I6] = 62 * scale
      cpercol[I6L] = 11 * scale

    } else {
      cpercol[E2]  = 150 * scale
      cpercol[E4] =   30 * scale
      cpercol[E5B] =  int(17 * scale * E5BNumF)
      cpercol[E5R] =  int(65 * scale * E5RNumF)
      cpercol[E6] =   60 * scale
      cpercol[I2L] =  13 * scale
      cpercol[I2]  =  25 * scale
      cpercol[I4L] =  14 * scale 
      cpercol[I4]  =  20 * scale
      cpercol[I5L] =  13 * scale
      cpercol[I5]  =  25 * scale
      cpercol[I6L] =  13 * scale
      cpercol[I6] =   25 * scale
    }
  }
  {vcpercol.resize(CTYPi) vcpercol.fill(0)} // store the values in a vector
  for i=0,CTYPi-1 vcpercol.x(i)=cpercol[i]
}

//* setpmat()
proc setpmat () { local pre,po
  if(!dosetpmat) return // if pmat setup by user (in notebook), then don't reset its values
  for ii=0,CTYPi-1 for jj=0,CTYPi-1 for kk=0,1 pmat[ii][jj][kk]=0
  pmat[E2][E2][0]=0.187 
  pmat[E2][E2][1]=0//0.14
  pmat[E2][E4][0]=0.024
  pmat[E2][E5B][0]=0.024
  pmat[E2][E5R][0]=0.057
  pmat[E2][E6][0]=0
  pmat[E2][I2L][0]=0.51
  pmat[E2][I2][0]=0.43
  pmat[E2][I2][1]=0.14
  pmat[E4][E2][0]=0.145
  pmat[E4][E4][0]=0.243 
  pmat[E4][E5B][0]=0.122
  pmat[E4][E5R][0]=0.116
  pmat[E4][E6][0]=0.032
  pmat[E4][I4L][0]=0.51
  pmat[E4][I4][0]=0.43
  pmat[E4][I4][1]=0.14
  pmat[E5B][E2][0]=0.018
  pmat[E5B][E2][1]=0.25
  pmat[E5B][E2][2]=0.1
  pmat[E5B][E4][0]=0.007
  pmat[E5B][E5B][0]=0.07 
  pmat[E5B][E5B][1]=0.25 
  pmat[E5B][E5B][2]=0.1 
  pmat[E5B][E5R][0]=0.017 
  pmat[E5B][E5R][1]=0.25 
  pmat[E5B][E5R][2]=0.1
  pmat[E5B][E6][0]=0.07
  pmat[E5B][I2L][1]=0.14
  pmat[E5B][I2L][2]=0.07
  pmat[E5B][I5L][0]=0.51
  pmat[E5B][I5L][1]=0.14
  pmat[E5B][I5L][2]=0.07
  pmat[E5B][I5][0]=0.43
  pmat[E5B][I5][1]=0.14
  pmat[E5B][I5][2]=0.07
  pmat[E5R][E2][0]=0.022
  pmat[E5R][E4][0]=0.007
  pmat[E5R][E5B][0]=0.08 
  pmat[E5R][E5B][1]=0.25 
  pmat[E5R][E5R][0]=0.191 
  pmat[E5R][E5R][1]=0.14 
  pmat[E5R][E6][0]=0.032
  pmat[E5R][I5L][0]=0.51
  pmat[E5R][I5][0]=0.43
  pmat[E5R][I5][1]=0.14
  pmat[E6][E2][0]=0
  pmat[E6][E4][0]=0
  pmat[E6][E5B][0]=0.028
  pmat[E6][E5R][0]=0.006
  pmat[E6][E6][0]=0.028
  pmat[E6][I6L][0]=0.51
  pmat[E6][I6][0]=0.43
  pmat[E6][I6][1]=0.14
  pmat[I2L][E2][0]=0.35
  pmat[I2L][E5B][0]=0.5
  pmat[I2L][E5R][0]=0.35
  pmat[I2L][E6][0]=0.25
  pmat[I2L][I2L][0]=0.09
  pmat[I2L][I2][0]=0.53
  pmat[I2L][I5][0]=0.53
  pmat[I2L][I6][0]=0.53
  pmat[I2][E2][0]=0.44
  pmat[I2][I2L][0]=0.34
  pmat[I2][I2][0]=0.62
  pmat[I4L][E4][0]=0.35
  pmat[I4L][I4L][0]=0.09
  pmat[I4L][I4][0]=0.53
  pmat[I4][E4][0]=0.44
  pmat[I4][I4L][0]=0.34
  pmat[I4][I4][0]=0.62
  pmat[I5L][E2][0]=0.35
  pmat[I5L][E5B][0]=0.35
  pmat[I5L][E5R][0]=0.35
  pmat[I5L][E6][0]=0.25
  pmat[I5L][I2][0]=0.53
  pmat[I5L][I5L][0]=0.09
  pmat[I5L][I5][0]=0.53
  pmat[I5L][I6][0]=0.53
  pmat[I5][E5B][0]=0.44
  pmat[I5][E5R][0]=0.44
  pmat[I5][I5L][0]=0.34
  pmat[I5][I5][0]=0.62
  pmat[I6L][E2][0]=0.35
  pmat[I6L][E5B][0]=0.25
  pmat[I6L][E5R][0]=0.25
  pmat[I6L][E6][0]=0.35
  pmat[I6L][I2][0]=0.53
  pmat[I6L][I5][0]=0.53
  pmat[I6L][I6L][0]=0.09
  pmat[I6L][I6][0]=0.53
  pmat[I6][E6][0]=0.44
  pmat[I6][I6L][0]=0.34
  pmat[I6][I6][0]=0.62
}

//* scalepmat(fctr) - multiply values in pmat by fctr
proc scalepmat () { local fctr,from,to,cl
  fctr=$1
  for from=0,CTYPi-1 for to=0,CTYPi-1 for cl=0,1 pmat[from][to][cl] *= fctr
}

//* pmat2nq - return an NQS with info in pmat
obfunc pmat2nq () { local i,j,k localobj nqpmat
  nqpmat=new NQS("froms","tos","from","to","cold","pij")
  {nqpmat.strdec("froms") nqpmat.strdec("tos")}
  for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr if(pmat[i][j][k]) {
    nqpmat.append(CTYP.o(i).s,CTYP.o(j).s,i,j,k,pmat[i][j][k])
  }  
  return nqpmat
}

//* nq2pmat - load NQS ($o1) into pmat
proc nq2pmat () { local i,j,k localobj nq,vf,vto,vc,vpij
  {nq=$o1 nq.tog("DB") vf=nq.getcol("from") vto=nq.getcol("to") vc=nq.getcol("cold") vpij=nq.getcol("pij")}
  for i=0,CTYPi-1 for j=0,CTYPi-1 for k=0,colr pmat[i][j][k]=0
  for i=0,vf.size-1 pmat[vf.x(i)][vto.x(i)][vc.x(i)]=vpij.x(i)
  print "loaded " , nq , " into pmat"
}

//* synapse locations DEND SOMA AXON
proc setsynloc () { local from,to
  for from=0,CTYPi-1 for to=0,CTYPi-1 {
    if(ice(from)) {
      if(IsLTS(from)) {
        synloc[from][to]=DEND // distal [GA2] - from LTS
      } else {
        synloc[from][to]=SOMA // proximal [GA] - from FS
      }
    } else {
      synloc[from][to]=DEND // E always distal. use AM2,NM2
    }
  }
}

//* setdelmats -- setup delm,deld
proc setdelmats () { local from,to,ii,jj
  for from=0,CTYPi-1 for to=0,CTYPi-1 {
    if(synloc[from][to]==DEND) {
      delm[from][to]=4 * delmscale
      deld[from][to]=1
    } else {
      delm[from][to]=2.0 * delmscale
      deld[from][to]=0.2
    }
  }
  // snum=0
  // for ii=0,CTYPi-1 for jj=0,CTYPi-1 snum+=int(pmat[ii][jj][0]*numc[ii]*numc[jj]+1)
}

//* weight params
//** delay all 2+/-0.02 within column for now
proc setwmat () { local from,to,sy,gn,c
  for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=0,STYPi-1 for c=0,colr wmat[from][to][sy][c]=0

  wmat[E2][E2][AM2][0]=0.78
  wmat[E2][E2][AM2][1]=0.47 * EEGainInterC
  wmat[E2][E4][AM2][0]=0.36
  wmat[E2][E5B][AM2][0]=0.36
  wmat[E2][E5R][AM2][0]=0.93
  wmat[E2][E6][AM2][0]=0
  wmat[E2][I2L][AM2][0]=0.23

  wmat[E2][I2][AM2][0] = 0.23
  wmat[E2][I2][AM2][1] = 1.5 * EIGainInterC

  wmat[E4][E2][AM2][0]=0.58
  wmat[E4][E4][AM2][0]=0.95
  wmat[E4][E5B][AM2][0]=1.01
  wmat[E4][E5R][AM2][0]=0.54
  wmat[E4][E6][AM2][0]=2.27
  wmat[E4][I4L][AM2][0]=0.23

  wmat[E4][I4][AM2][0] = 0.23
  wmat[E4][I4][AM2][1] = 1.5 * EIGainInterC

  wmat[E5B][E2][AM2][0]=0.26
  wmat[E5B][E2][AM2][1]=0.47 * EEGainInterC
  wmat[E5B][E2][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E4][AM2][0]=0.17
  wmat[E5B][E5B][AM2][0]=0.71
  wmat[E5B][E5B][AM2][1]=0.47 * EEGainInterC
  wmat[E5B][E5B][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E5R][AM2][0]=0.24
  wmat[E5B][E5R][AM2][1]=0.47 * EEGainInterC
  wmat[E5B][E5R][AM2][2]=0.47 * EEGainInterC
  wmat[E5B][E6][AM2][0]=0.49

  wmat[E5B][I2L][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I2L][AM2][2]=1.5 * EIGainInterC

  wmat[E5B][I5L][AM2][0]=0.23
  wmat[E5B][I5L][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I5L][AM2][2]=1.5 * EIGainInterC

  wmat[E5B][I5][AM2][0]=0.23
  wmat[E5B][I5][AM2][1]=1.5 * EIGainInterC
  wmat[E5B][I5][AM2][2]=1.5 * EIGainInterC

  wmat[E5R][E2][AM2][0]=0.67
  wmat[E5R][E4][AM2][0]=0.48
  wmat[E5R][E5B][AM2][0]=0.88
  wmat[E5R][E5B][AM2][1]=0.47 * EEGainInterC
  wmat[E5R][E5R][AM2][0]=0.66
  wmat[E5R][E5R][AM2][1]=0.47 * EEGainInterC
  wmat[E5R][E6][AM2][0]=0.28
  wmat[E5R][I5L][AM2][0]=0.23
  wmat[E5R][I5][AM2][0]=0.23
  wmat[E5R][I5][AM2][1]=1.5 * EIGainInterC

  wmat[E6][E2][AM2][0]=0
  wmat[E6][E4][AM2][0]=0
  wmat[E6][E5B][AM2][0]=0.53
  wmat[E6][E5R][AM2][0]=0.08
  wmat[E6][E6][AM2][0]=0.53
  wmat[E6][I6L][AM2][0]=0.23
  wmat[E6][I6][AM2][0]=0.23
  wmat[E6][I6][AM2][1]=1.5 * EIGainInterC

  wmat[I2L][E2][GA2][0]=0.83
  wmat[I2L][E5B][GA2][0]=0.83
  wmat[I2L][E5R][GA2][0]=0.83
  wmat[I2L][E6][GA2][0]=0.83
  wmat[I2L][I2L][GA2][0]=1.5
  wmat[I2L][I2][GA2][0]=1.5
  wmat[I2L][I5][GA2][0]=0.83
  wmat[I2L][I6][GA2][0]=0.83

  wmat[I2][E2][GA][0]=1.5
  wmat[I2][I2L][GA][0]=1.5
  wmat[I2][I2][GA][0]=1.5

  wmat[I4L][E4][GA2][0]=0.83
  wmat[I4L][I4L][GA2][0]=1.5
  wmat[I4L][I4][GA2][0]=1.5

  wmat[I4][E4][GA][0]=1.5
  wmat[I4][I4L][GA][0]=1.5
  wmat[I4][I4][GA][0]=1.5

  wmat[I5L][E2][GA2][0]=0.83
  wmat[I5L][E5B][GA2][0]=0.83
  wmat[I5L][E5R][GA2][0]=0.83
  wmat[I5L][E6][GA2][0]=0.83
  wmat[I5L][I2][GA2][0]=0.83
  wmat[I5L][I5L][GA2][0]=1.5
  wmat[I5L][I5][GA2][0]=1.5
  wmat[I5L][I6][GA2][0]=0.83

  wmat[I5][E5B][GA][0]=1.5
  wmat[I5][E5R][GA][0]=1.5
  wmat[I5][I5L][GA][0]=1.5
  wmat[I5][I5][GA][0]=1.5

  wmat[I6L][E2][GA2][0]=0.83
  wmat[I6L][E5B][GA2][0]=0.83
  wmat[I6L][E5R][GA2][0]=0.83
  wmat[I6L][E6][GA2][0]=0.83
  wmat[I6L][I2][GA2][0]=0.83
  wmat[I6L][I5][GA2][0]=0.83
  wmat[I6L][I6L][GA2][0]=1.5
  wmat[I6L][I6][GA2][0]=1.5

  wmat[I6][E6][GA][0]=1.5
  wmat[I6][I6L][GA][0]=1.5
  wmat[I6][I6][GA][0]=1.5

  //set NMDA weights
  for from=0,CTYPi-1 for to=0,CTYPi-1 for c=0,colr wmat[from][to][NM2][c]=NMAMR*wmat[from][to][AM2][c]
  //gain control
  for from=0,CTYPi-1 for to=0,CTYPi-1 for sy=AM,GA2 for c=0,colr if(wmat[from][to][sy][c] > 0) {
    if(ice(from)) {
      if(ice(to)) {
        gn = IIGain
      } else {
        gn = IEGain
      }
      if(IsLTS(from) && !IsLTS(to)) gn *= 0.5
    } else {
      if(ice(to)) {
        gn = EIGain 
        if(IsLTS(to)) gn *= 0.5
      } else {
        gn = EEGain
        if(sy==NM || sy==NM2) gn *= EENMGain // E->E NMDA gain
      }
    }
    wmat[from][to][sy][c] *= gn 
  }
}

// %con (con/pre) = %div (div/post)

//* prune using values in prumat
proc pruc () { local i,j
  for i=0,CTYPi-1 for j=0,CTYPi-1{
      if(div[i][j][0] && numc[i] && numc[j] && prumat[i][j]){
        printf("Warning: pruning random %.2f%% of %s->%s syns\n",prumat[i][j]*100,CTYP.o(i).s,CTYP.o(j).s)
        for ixt(i) XO.prune(prumat[i][j],j)
      }
  }
}

//* get sprouting value assuming 0% sprouting == 50% pruning
func getspr () { local pr
  pr = $1
  return ((0.5-pr)/.5)*100
}

//* turn off pruning
proc pruoff () { local i,j
 for i=0,CTYPi-1 for j=0,CTYPi-1 prumat[i][j]=0
 for i=0,allcells-1 INTF6[i].prune(0)
}

//* set all entries in pruning matrix to $1
proc setpru () { local from,to,val
  val=$1
  pruoff() // first turn off pruning
  for from=0,CTYPi-1 for to=0,CTYPi-1 prumat[from][to]=val
}

//* print prumat
proc prumatpr () { local i,j
  for i=0,CTYPi-1 { for j=0,CTYPi-1{
      printf("%.2f  ",prumat[i][j])
   }
   printf("\n")
  }
}

//* clear sprmat entries to 0
proc clrsprmat () { local i,j
  for i=0,CTYPi for j=0,CTYPi sprmat[i][j]=0
}

//* unkill/prune all cells
proc unkp () {
  for i=0,allcells-1 {
    ce.o(i).flag("dead",0)
    ce.o(i).prune(0)
  }
}

//* kill cells who's ids are in $o1
proc dokill () { local id
  for vtr(&id,$o1) ce.o(id).flag("dead",1)
}

//* getkillids - gets ids of cells to kill in $o1 but excludes cells that are stim'ed
//$1=cell type to kill,$2=prct of cells to kill,$o3=vq stim nqs,$4=out vector of kill ids,$5=rnd seed
func getkillids () { local killcnt,i,j,ct,prct localobj vq,vkid,rd
  ct=$1 prct=$2 vq=$o3 vkid=$o4 killcnt=int(prct*numc[ct]) vkid.resize(0) j=0 i=ix[ct]
  rd=new Random() rd.ACG($5)
  while(j<killcnt){
    i=rd.discunif(ix[ct],ixe[ct])
    if(!vq.v[0].contains(i)){
      j+=1
      vkid.append(i)
    }
    i+=1
  }
  return killcnt
}

//* read .net file
strdef netfile
{sp = new NQS() cp = new NQS()}

//* CREATE CELLS
// %con (con/pre) = %div (div/post)
n=ty=id=0

//* sprcells() sprout cells in specific pathways using sprmat, $1=seed for rand generator
//max div is still 0.75*poty
func sprcells () { local id,a,prty,poty,sz,ls,mx,i localobj vid,vnewid,vnewdel,rd,vd,vtmp
  ls=$1 a=allocvecs(vid,vnewid,vnewdel,vd,vtmp) rd=new Random() rd.ACG(ls)
  for prty=0,CTYPi-1 for poty=0,CTYPi-1 if(sprmat[prty][poty]) for id=ix[prty],ixe[prty] {
    ce.o(id).getdvi(vid) ce.o(id).getdvi(0.2,vd)
    sz=div[prty][poty][0]*sprmat[prty][poty] mx=0.75*numc[poty]
    if(vd.x(poty)>=mx)continue//already @ max size
    while(sz+vd.x(poty)>mx) sz-=1
    vrsz(sz*4,vtmp,vnewid) rd.discunif(ix[poty],ixe[poty]) vtmp.setrand(rd)
    vtmp.uniq(vnewid) vtmp.resize(0)
    for i=0,vnewid.size-1 if(!vid.contains(vnewid.x(i))) vtmp.append(vnewid.x(i))
    vtmp.resize(sz)
    if(vtmp.size) {
      vnewdel.resize(vtmp.size)
      rd.uniform(delm[prty][poty]-deld[prty][poty],delm[prty][poty]+deld[prty][poty])
      vnewdel.setrand(rd)
      ce.o(id).setdvi(vtmp,vnewdel,2)
    }
  }
  dealloc(a)
  return 1
}

//** gethublims(col,hubtype,hubfactor,numhubs,mode) 
// get a matrix of size CTYPi X CTYPi, specifying div with mat.x(hubtype,othertype)
// and conv with mat.x(othertype,hubtype)
// hubtype = type of hub. hubfactor = desired ratio of hub div/conv vs non-hub div/conv
// numhubs = # of hubs. col = COLUMN for which to set hubs.
// mode == 0 <-- hub div(conv) is set to hubfactor * original div(conv)
// mode == 1 <-- hub div(conv) is set so that final hub div = hubfactor * final non_hub div (same for conv)
//  formula is based on:  m / ((N-H*m) / (C-H)) = F , and then solving for m
//   m = div for the hubs,  F = desired ratio of final hub div to final non-hub div
//   N = # of synapses (links),  C = total # of postsynaptic cells (including hubs) , H = # of hubs
//   similarly done for conv , but replace N with appropriate values
//   (/u/samn/intfcol/notebook.dol_1:21933)
obfunc gethublims () { local ct,mode,from,to,lim,nc,nhubs,fctr localobj col,mat
  {col=$o1 ct=$2 fctr=$3 nhubs=$4 mode=$5 mat=new Matrix(CTYPi,CTYPi)}
  for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to]) {
    {nc=col.numc[to] if(ct==to)nc-=1} // deduct for self-link
    if(mode==0) {
      lim = int( 0.5 + col.div[ct][to]*fctr )
    } else {
      lim = int( 0.5 + col.div[ct][to]*col.numc[ct]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
    }
    mat.x(ct,to) = MINxy(lim, nc) // at most div to all postsynaptic cells
  }
  for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct]) {
    {nc=col.numc[from] if(ct==from)nc-=1} // deduct for self-link
    if(mode==0) {
      lim = int( 0.5 + col.conv[from][ct]*fctr )
    } else {
      lim = int( 0.5 + col.div[from][ct]*col.numc[from]*fctr/(col.numc[ct]-nhubs+fctr*nhubs) )
    }
    mat.x(from,ct) = MAXxy(MINxy(lim, nc),1) // at most conv from all presynaptic cells, but at least 1
  }
  return mat
}

//** addhubs(column,cell-type,numhubs,scaling factor,skipI[,seed,allowz,hubmode,verbose])
// add hubs to the network by stealing wires from other neurons
// $o1 == column
// $2 == cell type of hub
// $3 == number of hubs to add
// $4 == scaling factor (should be > 1.0) for conv,div of hub
// $5 == skip div/conv of I cells
// $6 == seed - optional
// $7 == allowz - whether to allow pulling all links from/to another cell
// $8 == hubmode - which mode to use for gethublims (see above)
// $9 == verbose - optional
// function returns a Vector containing the ids of the cells selected as hubs (within column ids)
obfunc addhubs () { local a,ct,fctr,nhubs,idx,jdx,lseed,hubid,szorig,cursz,preid,poid,lim,skipI,to,from,vrb,changed,allowz,hmode\
                 localobj col,ce,vin,vout,nq,vd,vc,vdd,vdt,vddt,vpicked,vhubid,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz,mhlim
  col=$o1 ct=$2 nhubs=$3 fctr=$4 skipI=$5
  if(numarg()>5) lseed=$6 else lseed=1234
  if(numarg()>6) allowz=$7 else allowz=1
  if(numarg()>7) hmode=$8 else hmode=0
  if(numarg()>8) vrb=$9 else vrb=0
  {ce=col.ce hashseed_stats(lseed,lseed,lseed)}
  a=allocvecs(vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vtmp,vdsz,vcsz)
  vrsz(col.allcells,vin,vout,vd,vc,vdd,vdt,vddt,vpicked,vw1,vw2,vsyn,vprob,vsynt,vdsz,vcsz,vtmp)
  mhlim=gethublims(col,ct,fctr,nhubs,hmode)
  //vin,vout = input/output markers. vd,vc = div/conv.
  //vdd div/conv delays, vdt div/conv temp. vddt=div/conv delay temp
  //vpicked=which cells already picked as hubs
  vhubid=new Vector()
  {vhubid.indgen(col.ix[ct],col.ixe[ct],1) vhubid.shuffle() vhubid.resize(nhubs)}
  if(vrb) vlk(vhubid)
  for idx=0,vhubid.size-1 vpicked.x(vhubid.x(idx))=1 
  for idx=0,vhubid.size-1 { hubid=vhubid.x(idx) 
    if(vrb) printf("hub%d id = %d\n",idx+1,hubid)
    {ce.o(hubid).getdvi(vd,vdd,vw1,vw2,vprob,vsyn) ce.o(hubid).getconv(vc)}//IDs of post/presynaptic cells
    {ce.o(hubid).getconv(1.2,vcsz) vdsz.resize(CTYPi) vdsz.fill(0)}//counts of post/pre types
    for jdx=0,vd.size-1 vdsz.x(ce.o(vd.x(jdx)).type)+=1
    {vout.fill(0) vin.fill(0)}     //init as 0
    for jdx=0,vd.size-1 vout.x(vd.x(jdx))=1 //mark current postsynaptic cells
    for jdx=0,vc.size-1 vin.x(vc.x(jdx))=1  //mark current presynaptic cells
    for to=0,CTYPi-1 if(col.numc[to] && col.div[ct][to] && (!skipI || !ice(to))) {
      cursz=szorig=vdsz.x(to) // update divergence
      if(vrb) print "\torig div -> " , CTYP.o(to).s, " = " , szorig
      {lim=mhlim.x(ct,to) changed=1}
      while(cursz<lim && changed==1) { changed=0
        for(preid=col.ix[ct];preid<=col.ixe[ct] && cursz<lim;preid+=1) {// pick same presynaptic type
          if(vpicked.x(preid)) continue //dont take from other hubs
          ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt) 
          vtmp.fill(0)
          for jdx=0,vdt.size-1 vtmp.x(ce.o(vdt.x(jdx)).type)+=1
          if(!allowz && vtmp.x(to)<=1)continue//dont want to turn div of another cell to 0
          for jdx=0,vdt.size-1 { poid=vdt.x(jdx) // go thru postsynaptic cells looking for target type            
            if(ce.o(poid).type==to && poid!=hubid && vout.x(poid)==0) { cursz+=1
              {vd.append(poid) vdd.append(vddt.x(jdx)) vsyn.append(vsynt.x(jdx))}
              {vdt.remove(jdx) vddt.remove(jdx) vsynt.remove(jdx)}
              ce.o(preid).setdvi(vdt,vddt,vsynt) // update presynaptic cell
              vout.x(poid)=changed=1 // this cell synapses on poid
              break
            }
          }
        }
      }
      if(vrb) print "\tnew div -> " , CTYP.o(to).s, " = " , cursz
    }
    ce.o(hubid).setdvi(vd,vdd,vsyn) // update hub dvi
    for from=0,CTYPi-1 if(col.numc[from] && col.div[from][ct] && (!skipI || !ice(from))) {
      cursz=szorig=vcsz.x(from) // update convergence
      {lim=mhlim.x(from,ct) changed=1}
      if(vrb) print "\torig conv <- ", CTYP.o(from).s, " = " , szorig
      while(cursz<lim && changed==1) { changed=0
        for(preid=col.ix[from];preid<=col.ixe[from]&&cursz<lim;preid+=1) {
          if(preid==hubid || vin.x(preid)) continue // don't make self or double-connects
          ce.o(preid).getdvi(vdt,vddt,vw1,vw2,vprob,vsynt)
          for jdx=0,vdt.size-1{
            poid = vdt.x(jdx)
            if(vpicked.x(poid)) continue // don't take wires from other hubs            
            if(ce.o(poid).type==ct){ ce.o(poid).getconv(1.2,vtmp)
              if(allowz || vtmp.x(from)>1) { // make sure not to remove all inputs of a type to a cell
                vdt.x( jdx ) = hubid // reassign input to hub
                ce.o(preid).setdvi(vdt,vddt,vsynt) // reset presynaptic cell's div
                vin.x( preid ) = changed = 1 // mark input
                cursz += 1
                break
              }
            }
          }
        }
      }
      if(vrb) print "\tnew conv <- " , CTYP.o(from).s, " = " , cursz
    }    
  }
  {dealloc(a) return vhubid}
}

//* mkcolnqs - make an nqs with current pmat,wmat,delm,deld info for use by a COLUMN for wiring
// "dist" represents distance between columns: dist==0 for intra-COLUMN setup, dist>0 for INTER-COLUMN setup
proc mkcolnqs () { local from,to,sy,idx,d localobj froms,tos,sys
  if(numarg()>0)idx=$1 else idx=0
  {nqsdel(colnq[idx]) colnq[idx]=new NQS("froms","tos","sys","from","to","sy","w","pij","delm","deld","loc","dist")}
  colnq[idx].strdec("froms","tos","sys")
  for from=0,CTYPi-1 { froms=CTYP.o(from)
    for to=0,CTYPi-1 { tos=CTYP.o(to)
      for d=0,colr if(pmat[from][to][d]>0) for sy=0,STYPi-1 if(wmat[from][to][sy][d]>0) { sys=STYP.o(sy)
        colnq[idx].append(froms.s,tos.s,sys.s,from,to,sy,wmat[from][to][sy][d],pmat[from][to][d],delm[from][to],deld[from][to],synloc[from][to],d)
      }
    }
  }
}

//* mkcols - make the COLUMNs
proc mkcols () { local id,x,y,seed
  id=0
  for y=0,colH-1 for x=0,colW-1 {
    if(dbgcols)seed=dvseed else seed=(id+1)*dvseed
    lcol.append(gcol[y][x]=new COLUMN(id,vcpercol,colnq,seed,x,y,setdviPT))
    col[id]=gcol[y][x]
    col[id].verbose=verbose_INTF6
    id+=1
  }
}

//* wirecols - setup inter-COLUMN connectivity with NetCon
proc wirecols () { local x1,y1,x2,y2,dx,dy,maxd,d localobj fromc,toc
  if(numarg()>0) d=$1 else d=colr
  if(torus) { // wraparound
    //alternate coordinates: ( -colW+x   ,  -colH+y )
    //alternate system: -5  -4  -3  -2  -1
    //original system:   0   1   2   3   4
    //layed out as a line: -5  -4  -3  -2  -1  0   1   2   3   4
    //only need to compare in normal system, and 1 alternate coordinate vs original (and vice versa)
    for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
      if(y1==y2 && x1==x2) continue // skip self-self    
      dx=MINxy(abs(x1-x2), MINxy(abs((-colW+x1)-x2), abs(x1-(-colW+x2))) )
      dy=MINxy(abs(y1-y2), MINxy(abs((-colH+y1)-y2), abs(y1-(-colH+y2))) )
      if((maxd=MAXxy(dx,dy)) > d) continue // skip too far
      gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
    }
  } else { // no wrap-around
    for y1=0,colH-1 for x1=0,colW-1 for y2=0,colH-1 for x2=0,colW-1 {
      if(y1==y2 && x1==x2) continue // skip self-self    
      if((maxd=MAXxy(abs(x1-x2),abs(y1-y2))) > d) continue // skip too far
      gcol[y1][x1].wire2col(gcol[y2][x2],colnq,maxd,ncl) // unidirectional wiring
    }
  }
}

//* intercoloff - turn off all weights between COLUMNs
proc intercoloff () { local i localobj xo
  for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) {
    for i=0,6 xo.weight(i)=0
  }
}

//* intercolmul(from,to,sy,w)
proc intercolsyw () { local from,to,sy,w localobj xo
  from=$1 to=$2 sy=$3 w=$4
  for ltr(xo,ncl) if(isojt(xo.pre,col.ce.o(0)) && isojt(xo.syn,col.ce.o(0))) {
    if(xo.pre.type==from && xo.syn.type==to) xo.weight(sy)=w
  }
}

//* function calls to setup network

//** # of cells per column
setcpercol() //new numbers (10aug30)

//** setup pmat
if(name_declared("nqpmat")==2) { // read pmat from NQS if available, else set to default
  if(nqpmat!=nil) nq2pmat(nqpmat) else setpmat()
} else setpmat()
if(pmatscale!=1) scalepmat(pmatscale)

//** setup synapse locations,delays,wmat
setsynloc()
setdelmats()
setwmat() // new KMJ version

scrsz=50*1e3
double scr[scrsz]

//** make cells, columns, wire columns
mkcolnqs()
mkcols()
wirecols(1)


Loading data, please wait...