Emergence of physiological oscillation frequencies in neocortex simulations (Neymotin et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:138379
"Coordination of neocortical oscillations has been hypothesized to underlie the "binding" essential to cognitive function. However, the mechanisms that generate neocortical oscillations in physiological frequency bands remain unknown. We hypothesized that interlaminar relations in neocortex would provide multiple intermediate loops that would play particular roles in generating oscillations, adding different dynamics to the network. We simulated networks from sensory neocortex using 9 columns of event-driven rule-based neurons wired according to anatomical data and driven with random white-noise synaptic inputs. ..."
Reference:
1 . Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW (2011) Emergence of physiological oscillation frequencies in a computer model of neocortex. Front Comput Neurosci 5:19 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Oscillations; Synchronization; Laminar Connectivity;
Implementer(s): Lytton, William [bill.lytton at downstate.edu]; Neymotin, Sam [Samuel.Neymotin at nki.rfmh.org];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; Gaba; Gaba; Glutamate;
/
fdemo
readme.txt
intf6_.mod
misc.mod *
nstim.mod *
stats.mod *
vecst.mod
col.hoc
declist.hoc *
decmat.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
filtutils.hoc
finish_run.hoc
grvec.hoc *
init.hoc *
labels.hoc *
local.hoc *
misc.h
mosinit.hoc
network.hoc
nload.hoc
nqs.hoc *
nqsnet.hoc *
nrnoc.hoc *
params.hoc
python.hoc *
pywrap.hoc *
run.hoc
setup.hoc
simctrl.hoc *
spkts.hoc *
stats.hoc *
syncode.hoc *
xgetargs.hoc *
                            
// $Id: pywrap.hoc,v 1.12 2011/03/21 21:34:16 samn Exp $ 

//* variables
declare("INITPYWRAP",0) // whether initialized properly

//* initialize pywrap
if(2!=name_declared("p")) {
  print "pywrap.hoc: loading python.hoc"
  load_file("python.hoc")
}
func initpywrap () { localobj pjnk
  INITPYWRAP=0
  if(2!=name_declared("p")){printf("initpywrap ERR0A: PythonObject p not found in python.hoc!\n") return 0}
  print p  
  pjnk=new PythonObject()
  if(!isojt(p,pjnk)){printf("initpywrap ERR0B: PythonObject p not found in python.hoc!\n")}
  INITPYWRAP=1
  return 1
}
initpywrap()

//** pypmtm(vec,samplingrate)
// this function calls python version of pmtm, runs multitaper power spectra, returns an nqs
obfunc pypmtm () { local sampr,spc localobj vin,str,nqp,ptmp
  if(!INITPYWRAP) {printf("pypmtm ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from mtspec import *")) {printf("pypmtm ERR0B: could not import mtspec python library!\n") return nil}  
  if(numarg()==0) {printf("pypmtm(vec,samplingrate)\n") return nil}
  vin=$o1 sampr=$2 str=new String()
  p.vjnk = vin.to_python()
  p.vjnk = p.numpy.array(p.vjnk)
  spc = 1.0 / sampr // "spacing"
  sprint(str.s,"[Pxx,w]=mtspec(vjnk,%g,4)",spc)
  nrnpython(str.s)
  nqp=new NQS("f","pow")
  nqp.v.from_python(p.w)
  nqp.v[1].from_python(p.Pxx)
  return nqp
}

//** pybspow(vec,samplingrate[,maxf,pord])
// this function calls python version of bsmart, to get power pectrum, returns an nqs
// pord is order of polynomial -- higher == less smoothing. default is 12
obfunc pybspow () { local sampr,pord,maxf localobj vin,str,nqp,ptmp
  if(!INITPYWRAP) {printf("pybspow ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from bsmart import bspow")) {printf("pybspow ERR0B: could not import bsmart python library!\n") return nil}  
  if(numarg()==0) {printf("pybspow(vec,samplingrate)\n") return nil}
  vin=$o1 sampr=$2 str=new String()
  if(numarg()>2) maxf=$3 else maxf=sampr/2
  if(numarg()>3) pord=$4 else pord=12
  p.vjnk = vin.to_python()
  p.vjnk = p.numpy.array(p.vjnk)
  sprint(str.s,"Pxx=bspow(vjnk,%g,%g,p=%d)",sampr,maxf,pord)
  nrnpython(str.s)
  nqp=new NQS("f","pow")
  nqp.v.indgen(0,maxf,1)
  nqp.v[1].from_python(p.Pxx)
  return nqp
}

//** pyspecgram(vec,samplingrate[,orows])
// this function calls python version of specgram, returns an nqs
obfunc pyspecgram () { local sampr,spc,i,j,sz,f,tt,orows,a localobj vin,str,nqp,ptmp,vtmp
  if(!INITPYWRAP) {printf("pyspecgram ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from matplotlib.mlab import specgram")) {printf("pyspecgram ERR0B: could not import specgram from matplotlib.mlab!\n") return nil}  
  if(numarg()==0) {printf("pyspecgram(vec,samplingrate)\n") return nil}
  a=allocvecs(vtmp)
  vin=$o1 sampr=$2 str=new String()
  if(numarg()>2)orows=$3 else orows=1
  p.vjnk = vin.to_python()
  p.vjnk = p.numpy.array(p.vjnk)
  sprint(str.s,"[Pxx,freqs,tt]=specgram(vjnk,Fs=%g)",sampr)
  nrnpython(str.s)
  if(orows) {
    {nqp=new NQS("f","pow") nqp.odec("pow")}
    {sz=p.Pxx.shape[0] nqp.clear(sz)}
    for i=0,sz-1 {
      {vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
      nqp.append(f,vtmp)
    }
  } else {
    nqp=new NQS("f","pow","t")
    sz = p.Pxx.shape[0]
    nqp.clear(sz * p.Pxx.shape[1])
    for i=0,sz-1 {
      {vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
      for j=0,vtmp.size-1 nqp.append(f,vtmp.x(j),p.tt[j])
    }
  }
  dealloc(a)
  return nqp
}

//** pycsd(vec1,vec2,samplingrate)
// this function calls python version of csd (cross-spectral density)
// returns an nqs with csd -- csd is non-directional
obfunc pycsd () { local sampr,a localobj v1,v2,str,nqp
  if(!INITPYWRAP) {printf("pycsd ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from matplotlib.mlab import csd")) {printf("pycsd ERR0B: could not import csd from matplotlib.mlab!\n") return nil}  
  if(numarg()==0) {printf("pycsd(vec,samplingrate)\n") return nil}
  v1=$o1 v2=$o2 sampr=$3 str=new String()
  {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
  {p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
  sprint(str.s,"[Pxy,freqs]=csd(vjnk1,vjnk2,Fs=%g)",sampr)
  nrnpython(str.s)
  nqp=new NQS("f","pow")
  nqp.v[0].from_python(p.freqs)
  nqp.v[1].from_python(p.Pxy)
  return nqp
}

//** pypsd(vec,samplingrate)
// this function calls python version of psd (power-spectral density)
// returns an nqs with psd
obfunc pypsd () { local sampr localobj v1,str,nqp
  if(!INITPYWRAP) {printf("pypsd ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from matplotlib.mlab import psd")) {printf("pypsd ERR0B: could not import psd from matplotlib.mlab!\n") return nil}  
  if(numarg()==0) {printf("pypsd(vec,samplingrate)\n") return nil}
  v1=$o1 sampr=$2 str=new String()
  {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
  sprint(str.s,"[Pxx,freqs]=psd(vjnk1,Fs=%g)",sampr)
  nrnpython(str.s)
  nqp=new NQS("f","pow")
  nqp.v[0].from_python(p.freqs)
  nqp.v[1].from_python(p.Pxx)
  return nqp
}

//** pycohere(vec1,vec2,samplingrate) 
// this function calls python version of cohere (coherence is normalized csd btwn vec1, vec2)
// returns an nqs with coherence
obfunc pycohere () { local sampr,a localobj v1,v2,str,nqp
  if(!INITPYWRAP) {printf("pycohere ERR0A: python.hoc not initialized properly\n") return nil}
  if(!nrnpython("from matplotlib.mlab import cohere")) {printf("pycohere ERR0B: could not import cohere from matplotlib.mlab!\n") return nil}  
  if(numarg()==0) {printf("pycohere(vec1,vec2,samplingrate)\n") return nil}
  v1=$o1 v2=$o2 sampr=$3 str=new String()
  {p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
  {p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
  sprint(str.s,"[Pxy,freqs]=cohere(vjnk1,vjnk2,Fs=%g)",sampr)
  nrnpython(str.s)
  nqp=new NQS("f","coh")
  nqp.v[0].from_python(p.freqs)
  nqp.v[1].from_python(p.Pxy)
  return nqp
}

Loading data, please wait...