Hippocampal CA3 network and circadian regulation (Stanley et al. 2013)

 Download zip file 
Help downloading and running models
This model produces the hippocampal CA3 neural network model used in the paper below. It has two modes of operation, a default mode and a circadian mode. In the circadian mode, parameters are swept through a range of values. This model can be quite easily adapted to produce theta and gamma oscillations, as certain parameter sweeps will reveal (see Figures). BASH scripts interact with GENESIS 2.3 to implement parameter sweeps. The model contains four cell types derived from prior papers. CA3 pyramidal are derived from Traub et al (1991); Basket, stratum oriens (O-LM), and Medial Septal GABAergic (MSG) interneurons are taken from Hajos et al (2004).
1 . Stanley DA, Talathi SS, Parekh MB, Cordiner DJ, Zhou J, Mareci TH, Ditto WL, Carney PR (2013) Phase shift in the 24-hour rhythm of hippocampal EEG spiking activity in a rat model of temporal lobe epilepsy. J Neurophysiol 110:1070-86 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus; Medial Septum;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus septum medial GABAergic neuron;
Channel(s): I Na,t; I A; I K; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS; MATLAB;
Model Concept(s): Epilepsy; Brain Rhythms; Circadian Rhythms;
Implementer(s): Stanley, David A ;
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; I Na,t; I A; I K; I h; I K,Ca; I Calcium; Gaba; Glutamate;
function stats_plot (s)
global sig
global baseline_compare

baseline_compare = 0;

hold on

subplot(111)  %%%Plot FFT

%Cheap hack for plotting baseline (optional)
if baseline_compare 
    if isfield(s.name, 'noisename') == 0        %A raw output recording
        basestruct = build_struct(s.name.datapath, '1-baseline.txt','y');
        %Take fft of data structure
        [basef baseF] = daveFFT(basestruct.datatimes, basestruct.datafilt, 1);
        baseP = abs(baseF).^2;
        temp = round(length(baseP)/2);
        loglog (basef(1:temp), baseP(1:temp),'k:'); hold on

% Plot FFT Spectrum
% temp = round(length(t1)/2);
temp = round(length(s.fft.f));
loglog ((s.fft.f(2:temp)), (abs(s.fft.fft_val(2:temp)).^2), 'b'); hold on;
h1 = loglog ((s.fft.f(s.fft.fitlist)),(abs(s.fft.fft_val(s.fft.fitlist)).^2),'g:'); hold on;   %Plots the region of the spectrum we're fitting to
% temp2 = round(length(s.noisetimes)/2);
% plot (s.fftnoise.f(2:temp2), abs(s.fftnoise.fft_val(2:temp2)).^2, 'r');
%Plot starting at 2 to remove the zero term.
title('Power Spectrum');
xlabel ('freq (hz)')

%Plot linear best fit
fitlist = s.fft.fitlist;
p = [s.general_beta_est.beta_est s.general_beta_est.const_est];         %New format
% p = [s.general_beta_est, log10(mean(abs(s.fft.fft_val(2:temp).^2)))]; %Uncomment for old format
h2 = loglog((s.fft.f(min(fitlist):temp)), (10^p(2) * s.fft.f(min(fitlist):temp).^p(1)), 'r');
legend ([h1 h2], 'Fitting region',['Fit slope = ' num2str(p(1),'%1.2f')], 'location', 'NorthWest');

%Plot Wavelet Spectrum
loglog ((s.fft.wvf), (abs(s.fft.wvfft_val.^2)), 'b'); hold on;
h3 = loglog ((s.fft.wvf(s.fft.wvfitlist)),(abs(s.fft.wvfft_val(s.fft.wvfitlist)).^2),'g:'); hold on;   %Plots the region of the spectrum we're fitting to
title('Power Spectrum (datafilt)');
xlabel ('freq (hz)')

% Plot linear best fit
temp = length(s.fft.wvf);
wvfitlist = s.fft.wvfitlist;
p = [s.general_beta_est.wvbeta_est s.general_beta_est.wvconst_est];         %New format
% p = [s.general_beta_est, log10(mean(abs(s.fft.fft_val(2:temp).^2)))]; %Uncomment for old format
h4 = loglog((s.fft.wvf(min(wvfitlist):temp)), (10^p(2) * s.fft.wvf(min(wvfitlist):temp).^p(1)), 'm');
legend ([h1 h2 h4], 'Fitting region',['Fit slope = ' num2str(s.general_beta_est.beta_est,'%1.2f')],['Fit slope = ' num2str(p(1),'%1.2f')], 'location', 'NorthWest');


Loading data, please wait...