STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144523
"... We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. ..."
Reference:
1 . Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V (2011) STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. Cerebellum 10:667-82 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum deep nucleus neuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Temporal Pattern Generation; Short-term Synaptic Plasticity;
Implementer(s): Luthman, Johannes [jwluthman at gmail.com];
Search NeuronDB for information about:  I Na,p; I Na,t; I L high threshold; I T low threshold; I K; I h; I K,Ca;
/
LuthmanEtAl2011
readme.txt
CaConc.mod *
CaHVA.mod *
CalConc.mod *
CaLVA.mod *
DCNsyn.mod *
DCNsynGABA.mod *
DCNsynNMDA.mod *
fKdr.mod *
GammaStim.mod *
h.mod *
NaF.mod *
NaP.mod *
pasDCN.mod *
SK.mod *
sKdr.mod *
TNC.mod *
DCN_mechs.hoc
DCN_morph.hoc *
DCN_recording.hoc
DCN_run.hoc
DCN_simulation.hoc
mosinit.hoc
OutputDCN_soma_1s_ap.dat
OutputDCN_soma_1s_time.dat
OutputDCN_soma_1s_trace.dat
                            
TITLE Small conductance calcium dependent potassium current (SK) of deep cerebellar nucleus (DCN) neuron
COMMENT
    This channel's conductance is affected by the calcium concentration which
    has been accumulated through the CaHVA channel and kept track of by CaConc.mod.
    Calcium entry through the CaLVA channel is kept track of by CalConc.mod
    and doesn't affect the SK channel.
    Translated from GENESIS by Johannes Luthman and Volker Steuber. 
ENDCOMMENT
 
NEURON {
	SUFFIX SK
	USEION ca READ cai VALENCE 2
	USEION k READ ek WRITE ik
	RANGE gbar, z, ik
	GLOBAL qdeltat
}
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
}
 
PARAMETER { 
    qdeltat = 1
    gbar = 1e-5 (siemens/cm2)
} 

ASSIGNED {
	v (mV)
	ek (mV)
	ik (mA/cm2) 
	cai (mM)
	zinf 
    tauz (ms) 
} 
 
STATE {
	z : calcium-dependent activation variable
} 

INITIAL { 
    rate(cai)
    z = zinf 
} 
 
BREAKPOINT { 
    SOLVE states METHOD cnexp 
	ik = gbar * z * (v - ek)
} 

DERIVATIVE states { 
	rate(cai) 
	z' = (zinf - z) / tauz
} 

PROCEDURE rate(cai(mM)) {
	TABLE zinf, tauz FROM 0 TO 0.01 WITH 300
    zinf = cai*cai*cai*cai / (cai*cai*cai*cai + 8.1e-15) : 8.1e-15 is the result of (3e-4)^4

    if (cai < 0.005) {
        tauz = 1 - (186.67 * cai)
    } else {
        tauz = 0.0667
    }
    tauz = tauz / qdeltat
} 

Loading data, please wait...