Parametric computation and persistent gamma in a cortical model (Chambers et al. 2012)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:144579
Using the Traub et al (2005) model of the cortex we determined how 33 synaptic strength parameters control gamma oscillations. We used fractional factorial design to reduce the number of runs required to 4096. We found an expected multiplicative interaction between parameters.
Reference:
1 . Chambers JD, Bethwaite B, Diamond NT, Peachey T, Abramson D, Petrou S, Thomas EA (2012) Parametric computation predicts a multiplicative interaction between synaptic strength parameters that control gamma oscillations. Front Comput Neurosci 6:53 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Axon; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; Neocortex fast spiking (FS) interneuron; Neocortex spiny stellate cell; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron;
Channel(s): I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na;
Gap Junctions: Gap junctions;
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Parameter sensitivity;
Implementer(s): Thomas, Evan [evan at evan-thomas.net]; Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 interneuron basket PV GABA cell; GabaA; AMPA; NMDA; I A; I K; I K,leak; I K,Ca; I Calcium; I_K,Na; Gaba; Glutamate;
/
FRBGamma
mod
alphasyndiffeq.mod *
alphasynkin.mod *
alphasynkint.mod *
ampa.mod *
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod *
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod
naf_tcr.mod *
naf2.mod
nap.mod
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod *
                            
TITLE Potasium Type A current for RD Traub et al 2005

COMMENT
	A current for tuftIB (Intrinsic Bursting) cell.
	Modified by Tom Morse from below with a 2.6 times htau
	Implemention by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)
	
ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX ka_ib
	USEION k READ ek WRITE ik
	RANGE gbar, ik, m, h, alphah, betah, alpham, betam, mtau, htau
}
PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v (mV) ek 		(mV)  
} 
ASSIGNED { 
	ik 		(mA/cm2) 
	minf hinf 	(1)
	mtau (ms) htau 	(ms) 
	alphah (/ms) betah	(/ms)
	alpham (/ms) betam	(/ms)
} 
STATE {
	m h
}
BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gbar * m * m * m * m * h * ( v - ek ) 
:	debugging:
	alphah = hinf/htau
	betah = 1/htau - alphah
	alpham = minf/mtau
	betam = 1/mtau - alpham
} 
INITIAL { 
	settables(v) 
	m  = minf
	m  = 0
	h  = hinf
} 
DERIVATIVE states { 
	settables(v) 
	m' = ( minf - m ) / mtau 
	h' = ( hinf - h ) / htau
}

UNITSOFF 

PROCEDURE settables(v(mV)) { 
	TABLE minf, hinf, mtau, htau  FROM -120 TO 40 WITH 641

	minf  = 1 / ( 1 + exp( ( - v - 60 ) / 8.5 ) )
	mtau = 0.185 + 0.5 / ( exp( ( v + 35.8 ) / 19.7 ) + exp( ( - v - 79.7 ) / 12.7 ) )
	hinf  = 1 / ( 1 + exp( ( v + 78 ) / 6 ) )
	if( v <= -63 ) {
		htau = 0.5 / ( exp( ( v + 46 ) / 5 ) + exp( ( - v - 238 ) / 37.5 ) )
	}else{
		htau = 9.5
	}
	htau = htau * 2.6
}

UNITSON

Loading data, please wait...