:Reference :Colbert and Pan 2002
NEURON {
SUFFIX NaTg
USEION na READ ena WRITE ina
RANGE gNaTgbar, gNaTg, ina, vshifth, vshiftm, slopeh, slopem
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gNaTgbar = 0.00001 (S/cm2)
vshifth = 0 (mV)
vshiftm = 0 (mV)
slopeh = 6
slopem = 6
}
ASSIGNED {
v (mV)
ena (mV)
ina (mA/cm2)
gNaTg (S/cm2)
mInf
mTau
mAlpha
mBeta
hInf
hTau
hAlpha
hBeta
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
gNaTg = gNaTgbar*m*m*m*h
ina = gNaTg*(v-ena)
}
DERIVATIVE states {
rates()
m' = (mInf-m)/mTau
h' = (hInf-h)/hTau
}
INITIAL{
rates()
m = mInf
h = hInf
}
PROCEDURE rates(){
LOCAL qt
qt = 2.3^((34-21)/10)
UNITSOFF
if(v == -38){
v = v+0.0001
}
mAlpha = (0.182 * (v- (-38+vshiftm)))/(1-(exp(-(v- (-38+vshiftm))/slopem)))
mBeta = (0.124 * (-v + (-38+vshiftm)))/(1-(exp(-(-v + (-38+vshiftm))/slopem)))
mTau = (1/(mAlpha + mBeta))/qt
mInf = mAlpha/(mAlpha + mBeta)
if(v == -66){
v = v + 0.0001
}
hAlpha = (-0.015 * (v- (-66+vshifth)))/(1-(exp((v- (-66+vshifth))/slopeh)))
hBeta = (-0.015 * (-v +(-66+vshifth)))/(1-(exp((-v +(-66+vshifth))/slopeh)))
hTau = (1/(hAlpha + hBeta))/qt
hInf = hAlpha/(hAlpha + hBeta)
UNITSON
} |