Olfactory Computations in Mitral-Granule cell circuits (Migliore & McTavish 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:149415
Model files for the entry "Olfactory Computations in Mitral-Granule Cell Circuits" of the Springer Encyclopedia of Computational Neuroscience by Michele Migliore and Tom Mctavish. The simulations illustrate two typical Mitral-Granule cell circuits in the olfactory bulb of vertebrates: distance-independent lateral inhibition and gating effects.
Reference:
1 . Migliore M, McTavish T (2013) Olfactory Computation in Mitral-Granule Cell Circuits Encyclopedia of Computational Neuroscience, Jaeger D, Jung R, ed.
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Action Potentials; Intrinsic plasticity; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
MiglioreMcTavish2013
readme.html
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanetOB.mod *
forfig1-springer.hoc
forfig2.ses
forfig2-springer.hoc
forfig3-springer.hoc
gc-ka.hoc
mitral-lss.hoc
mosinit.hoc
screenshot1.png
screenshot2.png
screenshot3.png
                            
begintemplate Mitral

// ls - long secondary dendrites 

public soma, priden, secden, tuftden, hillock, initialseg
public dendritic, somatic, second, somden, synodor, isynpg
public dampa, igp


create soma, priden, secden[2], tuftden, hillock, initialseg

forall {Ra = 150}

objref dendritic, somatic, somden, synodor
objref isynpg, dampa, igp[2][3]

proc init() {

dendritic = new SectionList()
forsec "priden" dendritic.append()
forsec "secden" dendritic.append()
forsec "tuftden" dendritic.append()

somatic = new SectionList()
soma somatic.append
hillock somatic.append

somden = new SectionList()
forsec somatic somden.append()
forsec dendritic somden.append()

topol()
segments()
geometry()
memb()

}


proc topol() {local i
	connect secden[0](0), soma(.5)
	connect secden[1](0), soma(.5)
	connect priden(0), soma(1)
	connect tuftden(0), priden(1)

	connect hillock(0), soma(0)
	connect initialseg(0), hillock(1)
}

proc segments() {local i
	soma.nseg= 1
	priden.nseg = 5
	forsec "tuftden" nseg = 30
	forsec "secden" nseg = 20
	initialseg.nseg = 3
	hillock.nseg = 3
}

proc geometry() {local i
	soma { L = 25  diam = 20 }
	priden { L = 300  diam = 3 }
	forsec "tuftden" {rallbranch=20 L=300  diam(0:1)=.4:.4 }
	forsec "secden" { L=1000  diam=2 }
	initialseg{ L=30  diam=1.5}
	hillock { L=5  diam(0:1) = soma.diam(0) : initialseg.diam(0) }
	define_shape()
}
	


proc memb() {
	forall {insert pas}
	forsec somden {
		insert nax  insert kamt insert kdrmt
		ek = -90
		ena = 50
		gbar_nax = 0.04 sh_nax=10
	 	gbar_kdrmt = 0.0001
		gbar_kamt = 0.004
		}

	forall {Ra = 150}

	totarea=0
	forall {
		for (x) {totarea=totarea+area(x)}
		cm = 1.8
		g_pas = 1/12000
		e_pas = -65
	}

	initialseg {
		insert nax  insert kamt insert kdrmt
		ek = -90
		ena = 50
	        g_pas = 1/1000
	        gbar_nax = 0.8
		sh_nax = 0
	        gbar_kamt = 0.08
	        gbar_kdrmt = 0.0001
	}       

  
	tuftden {
	synodor = new Exp2Syn(.2)
	synodor.e=0
	synodor.tau1 = 20
	synodor.tau2 = 200

}

for i=0, 1 secden[i] {
	for j=0, 2 {
		igp[i][j] = new Exp2Syn(j*.4)
		igp[i][j].e=-80
		igp[i][j].tau1 = 1
		igp[i][j].tau2 = 200
	}
}

}

endtemplate Mitral

Loading data, please wait...