Multiscale simulation of the striatal medium spiny neuron (Mattioni & Le Novere 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:150284
"… We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. …"
Reference:
1 . Mattioni M, Le Novère N (2013) Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS One 8:e66811 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
Gap Junctions:
Receptor(s):
Gene(s): Kv4.2 KCND2; Kv1.2 KCNA2; Cav1.3 CACNA1D; Cav1.2 CACNA1C; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Synaptic Plasticity; Signaling pathways; Calcium dynamics; Multiscale;
Implementer(s): Mattioni, Michele [mattioni at ebi.ac.uk];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; I Na,p; I Na,t; I T low threshold; I A; I K,Ca; I CAN; I Calcium; I A, slow; I Krp; I R; I Q;
/
TimeScales-master
mod
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod *
caL13.mod *
caldyn.mod
caltrack.mod
can.mod *
caq.mod *
car.mod *
cat.mod *
catrack.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod *
krp.mod *
naf.mod *
nap.mod *
NMDA.mod
rubin.mod
skkca.mod
stim.mod *
vecevent.mod
test_input.py
test_vecstim.py
                            
TITLE Fast A-type Potassium current for nucleus accumbens (Kv4.2)

COMMENT
Jason Moyer 2004 - jtmoyer@seas.upenn.edu

Tkatch, T., Baranauskas, G., and Surmeier, D. J. (2000). Kv4.2 mRNA
abundance and A-type K(+) current amplitude are linearly related in
basal ganglia and basal forebrain neurons. J Neurosci 20, 579-588.

22 degrees

ENDCOMMENT

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(S) = (siemens)
}

NEURON {
	SUFFIX kaf
	USEION k READ ek WRITE ik
	RANGE gkbar, ik, mshift, hshift
}

PARAMETER {
	gkbar = 0.21	(S/cm2)		: 0.21 in soma and prox; 0.019211 in mid/dist dends

	mvhalf = -10.0	(mV)		: Tkatch 2000 pg 581
	mslope = -17.7	(mV)		: Tkatch 2000 pg 581 - need to use -17.7, not 17.7
	mshift = 0	(mV)
	
	hvhalf = -75.6	(mV)		: Tkatch 2000 pg 582
	hslope	= 10	(mV)		: match to Tkatch 2000 fig 3B
	hshift = 0	(mV)
	htau = 14	(ms)			: Tkatch 2000 Fig 3C

	qfact = 3
	power = 2
}

ASSIGNED { 
	v 		(mV)
    ik 		(mA/cm2)
	ek 		(mV)

	minf
	hinf
}

STATE {
    m h
}

BREAKPOINT {
    SOLVE states METHOD cnexp
	ik  = gkbar * m^power * h * (v-ek)
}

INITIAL {
	rates(v)
	m = minf
	h = hinf
}

FUNCTION_TABLE mtau (v(mV))  (ms)	: Tkatch 2000 Fig 2B

DERIVATIVE states {  
	rates(v)
	m' = (minf - m) / (mtau(v) / qfact)
	h' = (hinf - h) / (htau / qfact)
}


PROCEDURE rates( v(mV) ) {  : Boltzman adjusted to give proper Erev dependency 
	TABLE minf, hinf DEPEND mshift, hshift, hslope
		FROM -200 TO 200 WITH 201
			minf = 1  /  ( 1 + exp( (v - mvhalf - mshift) / mslope) ) 
			hinf = 1  /  ( 1 + exp( (v - hvhalf - hshift) / hslope) ) 
}



Loading data, please wait...