Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
    TITLE Endoplasmic Reticulum
	
    UNITS {
	(molar) = (1/liter)	
	(mM)	= (millimolar)
	(nA) = (nanoamp)
    (mA) = (milliampere)

	
    (um) = (micron)
    FARADAY = (faraday) (coulomb)
    PI = (pi) (1)
    }

    NEURON {
	RANGE tau, beta, gamma, scale, t1, ical, ip3min, spkcnt, ip3ip
	USEION cal READ cali WRITE ical
	POINTER ip3im, ip3id
	}

    STATE {
	cali (mM)
    caer (mM)
	Jip3h (1)
	Jip3m (1)
	 
	Jip3z (mM/ms)
	ERrelz (mM/ms)
	ERfilz (mM/ms)
	ERlekz (mM/ms)

	ier (mA/cm2)

    }

    PARAMETER {
    fer = 0.0025              : ca buffering coefficient in ER from John Rinzel 1997
    kerm = 0.2e-3 (mM) : from Huang 2004
    kerrel = 3e-12  (/s): from Huang, to be adjusted
    kerfila = 0.75e-12 (mM/s) : from John Rinzel 1997
    kerfilb = 0.2e-3 (mM) : from John Rinzel 1997
    kerlek = 6.15e-14 (/s): from Huang, to be adjusted
    rhover = 0.15 : ratio of volume to cytoplasmic volume
    : total cell vol = vol_cytoplasm + vol_er
    : where vol_er = rhover * vol_cytoplasm
    : thus vol_er = v_cell * rhover / (1 + rhover)
    caer0 = 0.20 (mM)
	Jip3h0 =0.2
	Jip3m0 =0.2
	
	Vip3 = 1e-9:1e-5 (1/cm2/s):1e-8(1/cm2/ms):
	dact = 8.2e-5 (mM):8.2e-2(uM)
	dinh = 1.05e-3 (mM):1.05(uM)
	dip3 = 0.13e-3 (mM):0.13(uM)
	ddis = 0.94e-3 (mM):0.94(uM)
	aip3  = 0.42e6 (1/mM/s):0.42(1/uM/ms)
	bip3 = 4.1 (1/s):4.1e-3(1/ms)
	ainh = 2e-4 (mM/s):2e-4(uM/ms)
	   
    }

    ASSIGNED {
       diam (um)
       ical (mA/cm2)

		ip3ip (mM)
		ip3id (mM)
		ip3im (mM)

	}

    INITIAL {
       : custom initialization may be needed
   caer = caer0 : initial calcium concentration in ER
   Jip3h = Jip3h0
   Jip3m = Jip3m0
   
    }

    BREAKPOINT {
       SOLVE states METHOD derivimplicit
	:cnexp  euler  derivimplicit
	  
	     ip3ip=ip3im+ip3id

	  
	ical = -2*FARADAY*(2e8*Jip3(cali,caer, ip3ip, Vip3, dact, dinh, dip3, ddis) +errel(cali,caer,kerrel,kerm)-erfil(cali,caer,kerfila,kerfilb)+erlek(cali,caer,kerlek)) * diam * (1e-7) / 4
	
	
 	:ix = -ical
	ier=ical
	

	Jip3z=Jip3(cali,caer, ip3ip, Vip3, dact, dinh, dip3, ddis)
	ERrelz=errel(cali,caer,kerrel,kerm)
	ERfilz=erfil(cali,caer,kerfila,kerfilb)
	ERlekz=erlek(cali,caer,kerlek)
    }

DERIVATIVE states {
    caer' = -(0.001)*( Jip3(cali,caer, ip3ip, Vip3, dact, dinh, dip3, ddis)
+errel(cali,caer,kerrel,kerm)-erfil(cali,caer,kerfila,kerfilb)+erlek(cali,caer,kerlek))/(rhover/fer)

	Jip3h'=(Jip3hinf(ip3ip, cali, dinh, dip3, ddis)-Jip3h)/Jip3th (ip3ip , ainh , cali , dinh , dip3 , ddis )
	Jip3m'=(Jip3minf(ip3ip, cali, dip3, dact)-Jip3m)/Jip3tm (cali , bip3, aip3 )
}


	FUNCTION errel(cali (mM),caer (mM),kerrel (/s),kerm (mM)) (mM/s) { : from Huang
		errel = kerrel*pow((cali/(cali+kerm)),1)*(caer-cali)
	}

    FUNCTION erfil(cali (mM),caer (mM),kerfila (mM/s),kerfilb (mM)) (mM/s) { : from John Rinzel 1997
       erfil = kerfila * pow(cali/(1 (mM)),2) / ( pow(cali/(1 (mM)),2) + pow(kerfilb/(1 (mM)),2) )
    }

    FUNCTION erlek(cali (mM),caer(mM),kerlek (/s)) (mM/s) { : from Huang
		erlek = kerlek*(caer-cali)
    }
	
	
	FUNCTION Jip3(cali (mM),caer (mM), ip3ip (mM), Vip3 (1/cm2/ms), dact (mM), dinh (mM), dip3 (mM), ddis (mM)) (mM/s) {
       :Jip3 = Vip3*pow(Jip3m(ip3ip, cali, dip3, dact),3)*pow(Jip3hinf(ip3ip, cali, dinh, dip3, ddis),3)*(caer-cali)
	   Jip3 = Vip3*pow(Jip3m,3)*pow(Jip3h,3)*(caer-cali)
    }
	
	FUNCTION Jip3minf (ip3ip (mM), cali (mM), dip3 (mM), dact (mM)){
	Jip3minf = (ip3ip/(ip3ip+dip3)) * (cali/(cali+dact))
	}
	
	
	FUNCTION Jip3tm (cali (mM), bip3 (1/ms), aip3 (1/mM/ms)){
	Jip3tm = 1/(bip3+aip3*cali)	
	}
	
	FUNCTION Jip3hinf (ip3ip (mM), cali (mM), dinh (mM), dip3 (mM), ddis (mM)){
	Jip3hinf = Jip3Q(ip3ip, dinh, dip3, ddis) / (Jip3Q(ip3ip, dinh, dip3, ddis) + cali)
	}
	
	FUNCTION Jip3th (ip3ip (mM), ainh (mM/ms), cali (mM), dinh (mM), dip3 (mM), ddis (mM)){
	Jip3th = 1/(ainh*Jip3Q(ip3ip, dinh, dip3, ddis)+cali)
	}
	
	FUNCTION Jip3Q (ip3ip (mM), dinh (mM), dip3 (mM), ddis (mM)){
	Jip3Q = dinh*((ip3ip+dip3)/(ip3ip+ddis))
	}
	


Loading data, please wait...