Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
TITLE Submembrane calcium dynamics for L-type calcium channels (HVA & LVA)

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX caldyn
	USEION cal READ ical, cali WRITE cali VALENCE 2
	RANGE pump, cainf, taur, drive
}

UNITS {
	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
}

CONSTANT {
	FARADAY = 96489		(coul)		: moles do not appear in units
}

PARAMETER {
    drive   = 10000  (1)
	depth	= 0.1	(um)		: depth of shell
	cainf	= 1e-5	(mM)		: gives eca = 108 mV
	taur	= 43	(ms)		: 
	kt	= 1e-4	(mM/ms)			: left over from Destexhe
	kd	= 1e-4	(mM)
	
	pump = 0.02					: turn pump up/down
}

STATE {
	cali		(mM) 
}

INITIAL {
	cali = cainf
}

ASSIGNED {
	ical		(mA/cm2)
	drive_channel	(mM/ms)
	drive_pump	(mM/ms)
}
	
BREAKPOINT {
	SOLVE state METHOD euler
}

DERIVATIVE state { 
	drive_channel =  - drive * ical / (2 * FARADAY * depth)
	    : this part converts the incoming calcium (from channels) into
	    : a corresponding change in internal concentration

	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	drive_pump = -kt * cali / (cali + kd )		: Michaelis-Menten
	    : this accounts for calcium being pumped back out - M-M
	    : represents mechanism that is rate-limited by low ion conc.
	    : at one end and max pumping rate and high end
	
		cali' = ( drive_channel + pump*drive_pump + (cainf-cali)/taur )
	    : (cainf-cali)/taur represents exponential decay towards cainf
	    : at a time constant of taur from diffusive processe
}



COMMENT
Internal calcium concentration due to calcium currents and pump.

Differential equations.

 This file contains two mechanisms:
 1. Simple model of ATPase pump with 3 kinetic constants (Destexhe 1992)
       Cai + P <-> CaP -> Cao + P  (k1,k2,k3)

   A Michaelis-Menten approximation is assumed, which reduces the complexity
   of the system to 2 parameters: 
       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
   The values of these parameters are chosen assuming a high affinity of 
   the pump to calcium and a low transport capacity (cfr. Blaustein, 
   TINS, 11: 438, 1988, and references therein).  

   For further information about this this mechanism, see Destexhe, A. 
   Babloyantz, A. and Sejnowski, TJ.  Ionic mechanisms for intrinsic slow 
   oscillations in thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993.


 2. Simple first-order decay or buffering:

       Cai + B <-> ...

   which can be written as:

       dCai/dt = (cainf - Cai) / taur

   where cainf is the equilibrium intracellular calcium value (usually
   in the range of 200-300 nM) and taur is the time constant of calcium 
   removal.

All variables are range variables

Written by Alain Destexhe, Salk Institute, Nov 12, 1992



Citations:
 
Destexhe, A. Babloyantz, A. and Sejnowski, TJ.  Ionic mechanisms for
intrinsic slow oscillations in thalamic relay neurons. Biophys. J. 65:
1538-1552, 1993.

Jackson MB, Redman SJ (2003) Calcium dynamics, buffering, and buffer
saturation in the boutons of dentate granule-cell axons in the hilus. J
Neurosci 23:1612-1621.

ENDCOMMENT

Loading data, please wait...