Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
TITLE Kir potassium current for nucleus accumbens (IRK1 = Kir 2.1 - see Mermelstein)

COMMENT 

Mermelstein PG, Song WJ, Tkatch T, Yan Z, Surmeier DJ (1998) Inwardly
rectifying potassium (IRK) currents are correlated with IRK subunit
expression in rat nucleus accumbens medium spiny neurons. J Neurosci
18:6650-6661.

Uchimura N, Cherubini E, North RA (1989).  Inward rectification
in rat nucleus accumbens neurons. J Neurophysiol 62, 1280-1286.

Kubo Y, Murata Y (2001).  Control of rectification and permeation by two
distinct sites after the second transmembrane region in Kir2.1 K+
channel. J Physiol 531, 645-660.

Hayashi H, Fishman HM (1988). Inward rectifier K+ channel kinetics from
analysis of the complex conductance of aplysia neuronal membrane.
Biophys J 53, 747-757. 

Jason Moyer 2004 jtmoyer@seas.upenn.edu
ENDCOMMENT


UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
        (molar) = (1/liter)
        (mM) = (millimolar)
}
 
NEURON {
        SUFFIX kir
        USEION k READ ek WRITE ik
        RANGE  gkbar, ik, mvhalf, mslope, mshift, qfact
		POINTER mu
}
 
PARAMETER {
	gkbar  = 0.00015 		(S/cm2)	: 

	mvhalf = -52		(mV)	: fit to Hayashi 1988 fig 14; minf = alpha/(alpha+beta)
	mslope = 13		(mV)	: fit to Hayashi 1988 fig 14
	mshift = 30			(mV)	: fit to Kubo 2001 fig 2B left - with ek = -84.3,
						:  mshift can range from 20 to 30 to fit slope of IR
	qfact = 0.5				: match in vitro data
}
 
STATE { m }
 
ASSIGNED {
		ki				(mM)
		ko				(mM)
        v 				(mV)
        ik 				(mA/cm2)
        gk				(S/cm2)
        minf		
        ek				(mV)
		
		mu (1)
   }
 
BREAKPOINT {
        SOLVE state METHOD cnexp
        gk = gkbar * m
        ik = ((mu-1)*0.25+1)*gk * ( v - ek )
}
  
INITIAL {
	rates(v)
	m = minf
}

FUNCTION_TABLE taumkir (v(mV))  (ms)		: Hayashi

DERIVATIVE state { 
        rates(v)
        m' = (minf - m) / ( taumkir(v)/qfact )
}
 
PROCEDURE rates( v(mV) ) {  : Boltzman adjusted to give proper Erev dependency 
	TABLE minf DEPEND mvhalf, mshift, mslope
		FROM -200 TO 200 WITH 201
			minf = 1  /  ( 1 + exp( (v - mvhalf + mshift) / mslope) )
}
 
 

Loading data, please wait...