Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
//*************************************************************************
// create and set netstims using champawt(), chnmdawt(), chint()



objref ConnectAMPA_[2000]
objref ConnectNMDA_[2000]
objref ConnectMGLU_[2000]
objref ConnectGABA_[2000]		// GABA only in soma
objref ConnectDR_[2000]
objref ConnectFAKE_[2000]		// NetCon that allows me to deliver an event to netstims

objref vsrc_
objref vsrcg_
objref tsrc_
objref fakeit					// i need something to connect the fake NetCon to


// create ampa connections
proc champawt() {    nAMPA_WT = $1   
    for i = 0, cell_number-1 {
    
    	for j = 0, NGLU-1 {
           	k = j*cell_number + i
			ConnectAMPA_[k] = new NetCon( NS_NetStim[k].pp, MSP_Cell[i].synlist.object[j].pp, 0, 0, nAMPA_WT) 
        }
    }
 }


// create nmda connections
proc chnmdawt() {    nNMDA_WT = $1 
    for i = 0, cell_number-1 {

    	for j = 0, NGLU-1 {
            k = j*cell_number + i
	        ConnectNMDA_[k] = new NetCon( NS_NetStim[k].pp, MSP_Cell[i].synlist.object[j+NGLU].pp, 0, 0, nNMDA_WT) 
        }
    }
}


// create mGluR connections
proc chmgluwt() {    nMGLU_WT = $1 
    for i = 0, cell_number-1 {

    	for j = 0, NGLU-1 {
            k = j*cell_number + i
	        ConnectMGLU_[k] = new NetCon( NS_NetStim[k].pp, MSP_Cell[i].synlist.object[j+2*NGLU].pp, 0, 0, nMGLU_WT) 
        }
    }
}


// create gaba connections
proc chgabawt() {    nGABA_WT = $1
    for i = 0, cell_number-1 {

        for j = 0, NGABA-1  {
            k = j*cell_number + i
            ConnectGABA_[k] = new NetCon( NS_NetStim[k+NGLU*cell_number].pp, MSP_Cell[i].synlist.object[j+3*NGLU].pp, 0, 0, nGABA_WT) 
        }
    }
}

// create DR connections
proc chdrwt() {    nDR_WT = $1 
    for i = 0, cell_number-1 {

    	for j = 0, NDA-1 {
            k = j*cell_number + i
	        ConnectDR_[k] = new NetCon( NS_NetStim[k+(NGLU+NGABA)*cell_number].pp, MSP_Cell[i].synlist.object[j+4*NGLU].pp, 0, 0, nDR_WT) 
        }
    }
}

// This procedure will use vector play to change the inputs for up and down states
proc chfreq() {		// downstate frequency, upstate frequency, time of cycle, gaba:ampa number inputs ratio
    nDS_FRQ = $1
    nUS_FRQ = $2
    nT_CYCLE = $3
    nGA_RATIO = $4

    ncyc = 7		// number of cycles, as in 1 ds, 1 us, 1 ds, 1 us, 1 ds = 5

    tsrc_ = new Vector( 20, 10e5)		// used for predicting the interval changes for jstims
    for i = 0, ncyc-2 {tsrc_.x[i] = (i+1)*nT_CYCLE}	// netstims do not change interval until new spike is registered - jstim fixes this
    tsrc_.play( "for i = 0, NSYN-1 {NS_NetStim[i].pp.change = $1}", nT_CYCLE-dt)

    vsrc_ = new Vector( 20, nDS_FRQ) 		// init to down state frequency
    vsrc_.x[1] = nUS_FRQ 				// higher frequency for up states
    vsrc_.x[3] = nUS_FRQ
    vsrc_.x[5] = nUS_FRQ
    vsrc_.x[7] = nUS_FRQ
    vsrc_.play(" for i = 0, NGLU-1 { NS_NetStim[i].pp.frequency = $1 }", nT_CYCLE-dt )

    vsrcg_ = new Vector( 20, nDS_FRQ*(NGLU/NGABA)*nGA_RATIO)	// inputs to gaba netstims
    vsrcg_.x[1] = nUS_FRQ * (NGLU/NGABA) * nGA_RATIO	
    vsrcg_.x[3] = nUS_FRQ * (NGLU/NGABA) * nGA_RATIO	
    vsrcg_.x[5] = nUS_FRQ * (NGLU/NGABA) * nGA_RATIO	
    vsrcg_.play(" for i = NGLU, NGLU+NGABA-1  { NS_NetStim[i].pp.frequency = $1 }", nT_CYCLE-dt )
}





proc make_netstims() {
	for i = 0, NGLU*cell_number-1 {		// cortical cells 
		cell_append(new NS_NetStim(), 0, 0, 0)
	}

	for i = NGLU*cell_number, (NGLU+NGABA)*cell_number-1 {	//makes NGABA interneurons
		cell_append(new NS_NetStim(), 0, 0, 0)
	}
	
	for i = (NGLU+NGABA)*cell_number, (NGLU+NGABA+NDA)*cell_number-1 {	//makes NDA
		cell_append(new NS_NetStim(), 0, 0, 0)
	}

	for i = 0, (NGLU+NGABA+NDA)*cell_number-1 {
		ConnectFAKE_[i] = new NetCon( fakeit, NS_NetStim[i].pp,1,0,1) 	// source, target, threshold, delay, weight
	}			// now, ConnectFAKE_ can be used to deliver an event to NetStim from hoc

	champawt(AMPA_WT)  
	chnmdawt(NMDA_WT)
	chmgluwt(MGLU_WT)
	chgabawt(GABA_WT)
	chdrwt(DR_WT)


	gampa(G_AMPA)
	gnmda(G_NMDA)
	//gmglu(G_MGLU)
	ggaba(G_GABA)
	
	chfreq(0,0,284,1)  // downstate frequency, upstate frequency, time of cycle, GABA:AMPA ratio
}

make_netstims()
setnetn(0)			// allows events to played into NetCons via ConnectFAKEs

print "cells loaded"




Loading data, please wait...