Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
TITLE Potassium A-type current for nucleus accumbens (Kv1.2)

COMMENT
Jason Moyer 2004 - jtmoyer@seas.upenn.edu

Shen W, Hernandez-Lopez S, Tkatch T, Held JE, Surmeier DJ (2004).
Kv1.2-containing k+ channels regulate subthreshold excitability of
striatal medium spiny neurons. J Neurophys 91: 1337-1349.

Some of the parameters were published incorrectly in the original paper - these
are detailed below

ENDCOMMENT

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
}
 
NEURON {
        SUFFIX kas
        USEION k READ ek WRITE ik
        RANGE  gkbar, ik
}
 
PARAMETER {
    gkbar   =   0.01 (mho/cm2)	: 0.01 soma&prox; 0.00091483 mid&dist

	qfact = 9				: qfact = 3 after equations were set but before 
							:	temp correction for fig 6E; QF = 9 is 35 degC

	vmh = -27.0	(mV)		: Shen 2004
	vmc = -16	(mV)		: Shen 2004	
	
	vhh = -33.5	(mV)		: Shen 2004 
	vhc = 21.5	(mV)		: Shen 2004
	
	taum0 = 3.4	(ms)		: Shen 2004
	Cm = 89.2	(ms)		: Shen 2004
	vthm = -34.3	(mV)	: Shen 2004
	vtcm = 30.1	(mV)		: Shen 2004
	
	alpha = 1				: correspondence with josh held
	vth1 = -0.96	(mV)	: Shen 2004
	vtc1 = 29.01	(mV)	: Shen 2004
	
	beta = 1				: josh held
	vth2 = -0.96	(mV)	: Shen 2004
	vtc2 = 100 	(mV)		: Shen 2004
	
	Ch = 9876.6	(ms)		: 548.7 * 18, set to match tauh = 2 s with div by qfact = 3
	a = 0.996				: josh held
	hshift = 0		(mV)
	htaushift = -90	(mV)	: to correct kinetics
}
 
STATE { m h }
 
ASSIGNED {
		ek				(mV)
        v 				(mV)
        ik 				(mA/cm2)
        gk				(S/cm2)
        minf
	hinf
        mtau		(ms)
        htau		(ms)
   }
  
INITIAL {
	settables(v)
	m = minf
	h = hinf

}

BREAKPOINT {
        SOLVE state METHOD cnexp
        gk = gkbar * m * m * (a*h + (1-a)) 
        ik = gk * ( v - ek )
}

DERIVATIVE state { 
        settables(v)
	mtau = mtau / qfact
	htau = htau / qfact
        m' = (minf - m)/mtau
        h' = (hinf - h)/htau
}

PROCEDURE settables( v (mV) ) {
	LOCAL left, right

	TABLE minf, hinf, mtau, htau DEPEND hshift, Ch
		FROM -200 TO 200 WITH 201
		
	  	minf = 1 / (1+(exp( (v - vmh) / vmc )))
  		hinf = 1 / (1+(exp( (v - vhh - hshift) / vhc )))
  		
 		mtau = taum0  +  Cm * exp( - ((v-vthm)/vtcm)^2 )

		left = alpha * exp( -(v-vth1-htaushift)/vtc1 )	: originally exp((v-vth1)/vtc1)
		right = beta * exp( (v-vth2-htaushift)/vtc2 )	: originally exp(-(v-vth2)/vtc2)
		htau = Ch  /  ( left + right )
}





 

Loading data, please wait...