Calcium response prediction in the striatal spines depending on input timing (Nakano et al. 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151458
We construct an electric compartment model of the striatal medium spiny neuron with a realistic morphology and predict the calcium responses in the synaptic spines with variable timings of the glutamatergic and dopaminergic inputs and the postsynaptic action potentials. The model was validated by reproducing the responses to current inputs and could predict the electric and calcium responses to glutamatergic inputs and back-propagating action potential in the proximal and distal synaptic spines during up and down states.
Reference:
1 . Nakano T, Yoshimoto J, Doya K (2013) A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Front Comput Neurosci 7:119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism:
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
Gap Junctions:
Receptor(s): D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Reinforcement Learning; STDP; Calcium dynamics; Reward-modulated STDP;
Implementer(s): Nakano, Takashi [nakano.takashi at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Glutamate; Dopaminergic Receptor; IP3; I Na,p; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; I A, slow; I Krp; I R; I Q; I Na, leak; I Ca,p; Ca pump;
/
Nakano_FICN_model
stim_files2
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod
car.mod *
cat.mod
damsg.mod
ER.mod
GABA.mod *
kaf.mod *
kas.mod *
kir.mod
krp.mod *
MGLU.mod
naf.mod
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_control.hoc
_IVsaveplot.hoc
_paper_condition.hoc
_plot_post02.hoc
_plot_pre_spine.hoc
_reset.hoc
_run_me.hoc
_saveIVplot.hoc
_saveplots.hoc
_timed_input_1AP_spine_post.hoc
_timed_input_Glu.hoc
all_tau_vecs.hoc *
baseline_values.txt
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses
fig4a.png
make_netstims.hoc
mosinit.hoc
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
posttiming.txt
set_synapse.hoc
set_synapse_caL.hoc
set_synapse_caL13.hoc
set_synapse_can.hoc
set_synapse_caq.hoc
set_synapse_ER.hoc
set_synapse_kir.hoc
set_synapse_naf.hoc
set_synapse_NMDA.hoc
stimxout_jns_sqwave_noinput.dat
synapse_templates.hoc
                            
: Calcium activated K channel.
: From Moczydlowski and Latorre (1983) J. Gen. Physiol. 82
: Model 3. (Scheme R1 page 523)

UNITS {
	(molar) = (1/liter)
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
	FARADAY = (faraday)  (kilocoulombs)
	R = (k-mole) (joule/degC)
}

NEURON {
	SUFFIX skkca
	USEION ca READ cai
	USEION k READ ek WRITE ik
	RANGE gkbar, ik, qfact, abar, bbar, stau
	GLOBAL oinf, tau
}

PARAMETER {
	stau = 1
	qfact = 1
	celsius_sk	= 35	(degC) : 35
	v		(mV)
	gkbar=0.175	(mho/cm2)	: Maximum Permeability
	cai		(mM) 
	ek		(mV)

	d1 = .84	      :page 527 Table II channel A
	d2 = 1.0			:our index 2 is the paper's subscript 4
	k1 = .18	(mM)
	k2 = .011	(mM)
	abar = .48	(/ms)
	bbar = .28	(/ms) :page 524. our bbar is the paper's alpha
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	tau		(ms)
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	ik = gkbar*o*(v - ek)
}

DERIVATIVE state {
	rate(v, cai)
	o' = (oinf - o)/(tau/qfact)
}

INITIAL {
	rate(v, cai)
	o = oinf
:	VERBATIM
:		printf("R = %f\n",R);
:		printf("F = %f\n",FARADAY);
:	ENDVERBATIM
}

: From R1 page 523. beta in the paper is the rate from closed to open
: and we call it alp here.

FUNCTION alp(v (mV), ca (mM)) (1/ms) { :callable from hoc
	alp = abar/(1 + exp1(k1,d1,v)/ca)
}

FUNCTION bet(v (mV), ca (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + ca/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius_sk))
}

PROCEDURE rate(v (mV), ca (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,ca)
	tau = stau/(a + bet(v, ca))
	oinf = a*tau
}


Loading data, please wait...