Sympathetic Preganglionic Neurone (Briant et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151482
A model of a sympathetic preganglionic neurone of muscle vasoconstrictor-type.
Reference:
1 . Briant LJ, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE (2014) Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J Neurophysiol 112:2756-78 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell; Spinal cord sympathetic preganglionic neuron;
Channel(s): I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Action Potential Initiation; Activity Patterns; Bursting; Ion Channel Kinetics; Temporal Pattern Generation; Parameter Fitting; Action Potentials; Parameter sensitivity;
Implementer(s):
Search NeuronDB for information about:  Spinal cord lumbar motor neuron alpha ACh cell; I Na,t; I L high threshold; I N; I A; I K; I K,Ca; I_AHP;
/
SPN_ModelDB
hoc_code
MATLAB_code
README.txt
borgka.mod
borgkdr.mod
cadifus2.mod
cagk.mod *
cal2.mod *
can2.mod
gap.mod
gapcalcium.mod
kadist.mod *
kahp.mod *
kaprox.mod *
na3.mod
ActivationProtocol_GKA.dat
ActivationProtocol_IA.dat
ActivationProtocol_V.dat
Cell.hoc
ClampFiddy.dat
ClampFiddy_vhalfm.dat
ClampFiddy_ZetaK.dat
ClampFiddy_ZetaM.dat
ClampHundred.dat
ClampHundred_vhalfm.dat
ClampHundred_ZetaK.dat
ClampHundred_ZetaM.dat
CurrentMagnitude_GKA.dat
CurrentMagnitude_IA.dat
CurrentMagnitude_V.dat
EPSCs_Filtered.txt
InactivationProtocol_GKA.dat
InactivationProtocol_IA.dat
InactivationProtocol_V.dat
init.hoc
mosinit.hoc *
                            
TITLE Borg-Graham type generic K-A channel for a Sympathetic Preganglionic Neuron

COMMENT
	Description: A-type transient K current for a Sympathetic Preganglionic Neuron.	
	Author: Linford Briant
	
	A-type transient K current = "IA"
	
	Sympathetic Preganglionic Neurones = "SPNs"
	
	Note that this is a modified version of IA found widely on SenseLab. This version has had steady-state kinetics 
	that have been fit to data for the IA in SPN according to Whyment et al. (2011).
	
	Whyment et al. (2011), PMID: 21211550

ENDCOMMENT



UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
	ek 		(mV)
	celsius 	(degC)
	gkabar=0.012 	(mho/cm2)
	vhalfn=-45	(mV)
	vhalfl=-67	(mV)
	vhalfm=-67	(mV)
	vhalfk=-45	(mV)
	a0l=0.023	(/ms)
	a0n=0.04	(/ms)
	zetan=-4	(1)
	zetal=2    	(1)
	gmn=0.45   	(1)
	gml=1 	  	(1)
	zetam=4		(1)
	zetak=-5	(1)
}


NEURON {
	SUFFIX borgka
	USEION k READ ek WRITE ik
        RANGE gkabar,gka,vhalfn,vhalfl,a0l,a0n,zetan,zetal,gmn,gml,zetam,zetak,vhalfm,vhalfk
        GLOBAL ninf,linf,taul,taun
}

STATE {
	n
	l
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpk(v(mV)) {
  alpk = exp(1.e-3*zetak*(v-vhalfk)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpm(v(mV)) {
  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states { 
        rates(v)
        n' = (ninf - n)/taun
        l' = (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,q10,b
        q10=3^((celsius-30)/10)
        a = alpn(v)
	b = alpk(v)
        ninf = 1/(1 + b)
        taun = betn(v)/(q10*a0n*(1 + a))
        a = alpl(v)
	b = alpm(v)
        linf = 1/(1 + b)
        taul = betl(v)/(q10*a0l*(1 + a))
}

Loading data, please wait...