3D model of the olfactory bulb (Migliore et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151681
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
Reference:
1 . Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Bursting; Temporal Pattern Generation; Oscillations; Synchronization; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; NMDA; Glutamate; Gaba; I Na,t; I A; I K;
/
bulb3d
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
all2all.py *
balance.py *
bindict.py
BulbSurf.py
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
fig7.py
fixnseg.hoc *
getmitral.py
gidfunc.py *
glom.py
granule.hoc *
granules.py
input-odors.txt *
loadbalutil.py *
lpt.py *
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mitral_dend_density.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
runsim.py
split.py *
util.py *
weightsave.py *
                            
'''
Construct bulb network with round-robin gid distribution and
mitral-centric synapse distribution.
The mitrals have already been constructed.
'''

from common import *
from util import elapsed
from split import wholemitral, mpiece_exists

t_begin = h.startsw()
import determine_connections as dc
h.load_file("granule.hoc")
import mgrs
elapsed('net_mitral_centric after import mgrs')

def register_mitrals(model):
  '''register mitrals'''
  for gid in model.mitrals:
    if h.section_exists("initialseg", model.mitrals[gid]):
      s = model.mitrals[gid].initialseg
      pc.set_gid2node(gid, rank)
      pc.cell(gid, h.NetCon(s(1)._ref_v, None, sec=s))
      if not mpiece_exists(gid): # must not be doing multisplit
        wholemitral(gid, model.mitrals[gid])
  elapsed('mitrals registered')


def mkgranule(gid):
  # calculate the dendrite length
  def granule_priden_length(ggid):
    from granules import granule_position_orientation as gpo
    from misc import distance
    psoma, u, proj = gpo(ggid)
    return distance(psoma, proj)

  g = h.Granule()
  # set length
  g.priden2[0].L = params.granule_priden2_len
  g.priden2[0].nseg = int(g.priden2[0].L / 10.) + 1
  g.priden.L = granule_priden_length(gid)
  g.priden.nseg = int(g.priden.L / 15.) + 1
  g.memb()
  
  return g

def build_granules(model):
  '''build granules'''
  model.granules = {}
  for gid in model.granule_gids:
    g = mkgranule(gid)    
    model.granules.update({gid : g})
  elapsed('%d granules built'%int(pc.allreduce(len(model.granules),1)))

def register_granules(model):
  for gid in model.granules:
    g = model.granules[gid]
    pc.set_gid2node(gid, rank)
    pc.cell(gid, h.NetCon(g.soma(.5)._ref_v, None, sec=g.soma))
  elapsed('granules registered')

def build_synapses(model):
  '''construct reciprocal synapses'''
  model.mgrss = {}
  for r in model.rank_gconnections:
    for ci in model.rank_gconnections[r]:
      rsyn = mgrs.mk_mgrs(*ci[0:7])
      if rsyn:
        model.mgrss.update({rsyn.md_gid : rsyn})
  for mgid in model.mconnections:
    for ci in model.mconnections[mgid]:
      #do not duplicate if already built because granule exists on this process
      if not model.mgrss.has_key(mgrs.mgrs_gid(ci[0], ci[3], ci[6])):
        rsyn = mgrs.mk_mgrs(*ci[0:7])
        if rsyn:
          model.mgrss.update({rsyn.md_gid : rsyn})
  nmultiple = int(pc.allreduce(mgrs.multiple_cnt(), 1))
  if rank == 0:
    print 'nmultiple = ', nmultiple
  detectors = h.List("ThreshDetect")
  elapsed('%d ThreshDetect for reciprocalsynapses constructed'%int(pc.allreduce(detectors.count(),1)))


def read_mconnection_info(model, connection_file):
  #model.mconnections = { mgid:[] for mgid in model.mitral_gids }
  from struct import unpack
  fi = open(connection_file, 'rb')
  rec = fi.read(22)
  while rec:
    md_gid, mgid, isec, xm, ggid, xg = unpack('>LLHfLf', rec)
    if mgid in model.mitral_gids:
      slot = mgrs.gid2mg(md_gid)[3]
      cinfo = (mgid, isec, xm, ggid, 0, xg, slot, (0.,0.,0.))
      if not model.mconnections.has_key(mgid):
        model.mconnections.update({ mgid:[] })
      model.mconnections[mgid].append(cinfo)
    rec = fi.read(22)
  fi.close()
  
  

def build_net_round_robin(model, connection_file):
  enter = h.startsw()
  dc.mk_mitrals(model)
  return
  read_mconnection_info(model, connection_file)
  dc.mk_gconnection_info(model)
  model.gids = model.mitral_gids.copy()
  model.gids.update(model.granule_gids)
  register_mitrals(model)
  build_granules(model)
  register_granules(model)
  build_synapses(model)
  elapsed('build_net_round_robin')
  if rank == 0: print "round robin setuptime ", h.startsw() - t_begin

#build_net_round_robin(getmodel())

if __name__ == '__main__':
  from util import serialize
  model = getmodel()
  for r in serialize():
    print "rank %d  %d mitrals  %d granules  %d MGRS nmultiple=%d max_multiple=%d" % (r,len(model.mitrals),len(model.granules), len(mgrss), mgrs.nmultiple, mgrs.max_multiple)

Loading data, please wait...