ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/151681.

3D model of the olfactory bulb (Migliore et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151681
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
Reference:
1 . Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Bursting; Temporal Pattern Generation; Oscillations; Synchronization; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; NMDA; Glutamate; Gaba; I Na,t; I A; I K;
/
bulb3d
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
all2all.py *
balance.py *
bindict.py
BulbSurf.py
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
fig7.py
fixnseg.hoc *
getmitral.py
gidfunc.py *
glom.py
granule.hoc *
granules.py
input-odors.txt *
loadbalutil.py *
lpt.py *
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mitral_dend_density.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
runsim.py
split.py *
util.py *
weightsave.py *
                            
'''
OdorStim supplies an odors[name] stimulus to each mitral tuft dendrite
defined by odors[name].glom_weights. Thus there is a separate NetCon for
each tuft dendrite on this process.
'''
from common import *
from gidfunc import *
import fileinput
import params
from odors import odors

class OdorStim():
  def __init__(self, od, start, dur, rel_conc=1.):
    ''' Specifies the odor for an OdorStim. Note that the OdorStim is
        activated with setup which can only be called after the mitrals
        dict exists (usually from determine_connections.py).
    '''
    # set odor weights
    if type(od) == str:
      self.odor = odors[od]
    else:
      self.odor = od

    self.rel_conc = rel_conc
    self.verbose = True
    self.tstop = start + dur

    
    mitrals = getmodel().mitrals
    self.netcons = {}
    self.rng_act = params.ranstream(0, params.stream_ods_act)
    self.rng_act.uniform(params.ods_freql, params.ods_freqh)
    
    for gid in mitrals:
      m = mitrals[gid]
      
      # in case of multisplit
      if not h.section_exists("tuftden", 0, m):
        continue
      
      iglom = mgid2glom(gid)
      w = self.odor.glom_weights[iglom]
      for i in range(int(m.synls.count())):
        nc = h.NetCon(None, m.synls.o(i))
        # rng for weights
        rw = params.ranstream(gid, params.stream_ods_w + i)
        nc.weight[0] = w * self.rel_conc * rw.uniform(params.ods_wl, params.ods_wh)

        self.netcons.update({(gid, i):(nc, rw)})

    self.fih = h.FInitializeHandler(0, (self.init_ev, (start,)))

  def init_ev(self, start):
    ''' first event at start.
        In principle this can be called by the user during a simulation
        but if h.t < the previous stop, the randomness will be mixed
        between the multiple (start,stop) intervals.
    '''
    if params.sniff_invl == None:
      self.nxt_invl = self.rng_act.repick()
      start += self.nxt_invl
    else:
      self.nxt_invl = params.sniff_invl
    h.cvode.event(start, (self.ev, (start,)))

  #def ev(self, time, interval, stop):

  def ev(self, time):
    ''' time is the standard time with no randomness.
        h.t may be before or after and each syapse will receive its event
        at h.t + individual netcon delay
    '''

    # update weights
    for key in self.netcons:
      iglom = mgid2glom(key[0])
      w = self.odor.glom_weights[iglom]
      nc, rw = self.netcons[key]
      nc.weight[0] = w * self.rel_conc * rw.repick()
      nc.delay = 0.

      # call event queue
      nc.event(h.t)

    # fix next activations
    if params.sniff_invl == None:
        self.nxt_invl = 1000. / self.rng_act.repick()

    if time + self.nxt_invl < self.tstop:
      if rank == 0 and self.verbose: print 'activation of %s at %.3g (ms)\tinterval %.3g' % (self.odor.name, h.t, self.nxt_invl)
      h.cvode.event(time + self.nxt_invl, (self.ev, (time + self.nxt_invl,)))

# create odorseq
def OdorSequence(seq):
  odseq = []
  
  if type(seq) == str:
    for i, line in enumerate(fileinput.input(seq)):
      tk = line.split()
      
      if len(tk) < 4 and rank == 0:
        print 'line %i of %s was ignored' % (i, seq)
        continue
      
      name = tk[0]
      init = float(tk[1])
      dur = float(tk[2])
      conc = float(tk[3])
      
      odseq.append(OdorStim(name, init, dur, conc))
      
  elif type(seq) == list:
    for odinfo in seq:
      odseq.append(OdorStim(*odinfo))
      
  return odseq

if __name__ == '__main__':
  h.load_file("nrngui.hoc")
  import common
  common.nmitral = 2
  common.ncell = 10
  import determine_connections
  import odors
  ods = OdorStim(odors.odors['Apple'])
  ods.setup(determine_connections.mitrals, 10., 20., 100.)
  h.tstop = 150
  h.run()
  print 't=', h.t

Loading data, please wait...