Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015)

 Download zip file 
Help downloading and running models
Accession:153574
A detailed network model of the dual-layer dendro-dendritic inhibitory microcircuits in the rat olfactory bulb comprising compartmental mitral, granule and PG cells developed by Aditya Gilra, Upinder S. Bhalla (2015). All cell morphologies and network connections are in NeuroML v1.8.0. PG and granule cell channels and synapses are also in NeuroML v1.8.0. Mitral cell channels and synapses are in native python.
Reference:
1 . Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: Python; MOOSE/PyMOOSE;
Model Concept(s): Sensory processing; Sensory coding; Markov-type model; Olfaction;
Implementer(s): Bhalla, Upinder S [bhalla at ncbs.res.in]; Gilra, Aditya [aditya_gilra -at- yahoo -period- com];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I A; I h; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
<?xml version="1.0" encoding="UTF-8"?>

<channelml xmlns="http://morphml.org/channelml/schema" 
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
    xmlns:meta="http://morphml.org/metadata/schema" 
    xsi:schemaLocation="http://morphml.org/channelml/schema  http://www.neuroml.org/NeuroMLValidator/NeuroMLFiles/Schemata/v1.8.1/Level2/ChannelML_v1.8.1.xsd"
    units="SI Units">

    <meta:notes>Excitatory ORN to mitral synapse taken from the paper Djurisic etal 2008 JNeurosci</meta:notes>
     
    <synapse_type name="ORN_mitral">
               
        <status value="in_progress">
            <meta:contributor>
                <meta:name>Aditya Gilra</meta:name>
            </meta:contributor>
        </status>
    
        <meta:notes> Dual exponential excitatory ORN to mitral synapse </meta:notes>
        
        <meta:authorList>
            <meta:modelAuthor>
                <meta:name>Djurisic et al.</meta:name>
            </meta:modelAuthor>
            <meta:modelTranslator>
                <meta:name>Aditya Gilra</meta:name>
                <meta:institution>NCBS, India</meta:institution>    
                <meta:email>adityag@ncbs.res.in</meta:email>
            </meta:modelTranslator>
        </meta:authorList>
        
        
        <meta:notes> Djurisic et al gives time course and upper bound on gmax (100 synapses producing uniform at least 4mV EPSP) </meta:notes>
        <meta:publication>
           <meta:fullTitle>M. Djurisic, M. Popovic, N. Carnevale, and D. Zecevic, “Functional structure of the mitral cell dendritic tuft in the rat olfactory bulb,” JOURNAL OF NEUROSCIENCE, vol. 28, no. 15, pp. 4057-4068, Apr. 2008.</meta:fullTitle>
        </meta:publication>
        <meta:notes> Zhou et al have 1mV sEPSP in mouse slices, Nickell et al have ~3mV EPSP in rat slices. </meta:notes>
        <meta:publication>
           <meta:fullTitle>Zhishang Zhou and Leonardo Belluscio, “Intrabulbar Projecting External Tufted Cells Mediate a Timing-Based Mechanism That Dynamically Gates Olfactory Bulb Output,” J. Neurosci. 28, no. 40 (October 1, 2008): 9920-9928.</meta:fullTitle>
        </meta:publication>
        <meta:publication>
           <meta:fullTitle>William T. Nickell, M. T. Shipley, and Michael M. Behbehani, “Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices,” Brain Research Bulletin 39, no. 1 (1996): 57-62.</meta:fullTitle>
        </meta:publication>
        
        <meta:neuronDBref>
            <meta:modelName></meta:modelName>
            <meta:uri></meta:uri>
        </meta:neuronDBref>
       
       <!--<doub_exp_syn max_conductance="8.6516e-9" rise_time="1.6094e-3" decay_time="1.6094e-3" reversal_potential="0.0"/>-->
       <!-- Djurisic et al 2008 model multiple excitatory+inhibitory conductances over the whole tuft with time course as below.
        They also model a single excitatory + inhibitory synapse at the base of the tuft as a proxy to the multiple synapses above. 
        Since I am modeling multiple synapses in the tuft, I use the former synaptic time course as below. -->
       <!--<doub_exp_syn max_conductance="4e-9" rise_time="2.84e-3" decay_time="5.99e-3" reversal_potential="0.0"/>-->
       <doub_exp_syn max_conductance="6e-9" rise_time="1e-3" decay_time="1e-3" reversal_potential="0.0"/>
       
    </synapse_type>
</channelml>

Loading data, please wait...