Spine head calcium in a CA1 pyramidal cell model (Graham et al. 2014)

 Download zip file 
Help downloading and running models
Accession:154732
"We use a computational model of a hippocampal CA1 pyramidal cell to demonstrate that spine head calcium provides an instantaneous readout at each synapse of the postsynaptic weighted sum of all presynaptic activity impinging on the cell. The form of the readout is equivalent to the functions of weighted, summed inputs used in neural network learning rules. Within a dendritic layer, peak spine head calcium levels are either a linear or sigmoidal function of the number of coactive synapses, with nonlinearity depending on the ability of voltage spread in the dendrites to reach calcium spike threshold. ..."
Reference:
1 . Graham BP, Saudargiene A, Cobb S (2014) Spine head calcium as a measure of summed postsynaptic activity for driving synaptic plasticity. Neural Comput 26:2194-222 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Graham, Bruce [B.Graham at cs.stir.ac.uk];
/
GrahamEtAl2014
Cells
Results
readme.html
burststim2.mod *
cad.mod
cagk.mod
carF.mod
distca.mod
distr.mod *
h.mod *
kadist.mod *
kaprox.mod *
kca.mod *
kdrca1.mod *
km.mod
na3n.mod *
naxn.mod *
nmdaca.mod *
burst_cell.hoc *
CA1PC.hoc
mosinit.hoc
randomlocation.hoc
ranstream.hoc *
run_batsyn.hoc
run_PC.hoc
screenshot1.png
screenshot2.png
screenshot3.png
setup_PC.hoc
synstim.ses
                            
TITLE Ca R-type channel with high threshold for activation

: HVA calcium channels are inserted in the spine head
: Activation and inactivation parameters taken from
: Foehring RC, Mermelstein PG, Song W, Ulrich S and Surmeier DJ
: Unique properities of R-type calcium currents in neucortical and neostriatal neurons
: J Neurophysiol (2000) 84: 2225 - 2236
:
: written by Lei Tian on 04/11/06
: As used by Holbro et al PNAS 107:15975-15980, 2010 (BPG)
: Parameters made available through hoc (BPG)

NEURON {
	SUFFIX carF
	USEION ca  WRITE ica
        RANGE gcabar, m, h, g, p, eca
	RANGE inf, fac, vha, ka, ta, vhi, ki, ti
	RANGE irtype
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {	: parameters that can be entered when function is called in cell-setup
    	v               (mV)
    	celsius = 30	(degC)
	dt              (ms)
    	gcabar = 0.351  (mho/cm2) : initialized conductance 
	eca = 10	(mV)      : Ca++ reversal potential was choosen to best fit the GHK between -40 and -10 mV	
	vha = -14	(mV)	: half activation voltage (BPG)
	ka = -6.7	(1)	: activation slope (BPG)
	ta = 3.6	(ms)	: activation time constant (BPG)
	vhi = -65	(mV)	: half inactivation voltage (BPG)
	ki = 11.8	(1)	: inactivation slope (BPG)
	ti = 200	(ms)	: inactivation time constant (BPG)
}  

STATE {	m h }               

ASSIGNED {                  
	ica             (mA/cm2)
    	inf[2]
	fac[2]
	tau[2]
	irtype
	g                       :R_type channel total conductance
	p
	
}

BREAKPOINT {
	SOLVE states METHOD derivimplicit
	ica = gcabar*m*m*m*h*(v - eca)
	irtype= -ica
	}

INITIAL {
    	m = 0                               : initial activation parameter value
	h = 0.5                             : initial inactivation parameter value
	states()
	ica = gcabar*m*m*m*h*(v - eca)      : initial Ca++ current value
    	irtype=-ica 				: the ca current through R_type channel
	}

DERIVATIVE states {
	mhn(v*1(/mV))
	m' = (inf[0] - m) / tau[0]
	h' = (inf[1] - h) / tau[1]
}

FUNCTION varss(v, i) {
	if (i==0) {
           varss = 1 / (1 + exp((v-vha)/(ka)))	: Ca activation
	}
	else if (i==1) {    
        varss = 1/ (1 + exp((v-vhi)/(ki)))     : Ca inactivation
	}
}

FUNCTION vartau(v, i) {
	if (i==0) {
           vartau = ta		: activation variable time constant 
        }
	else if (i==1) {
           vartau = ti		: inactivation variable time constant 
       }
	
}	

PROCEDURE mhn(v) {LOCAL a, b :rest = -70
:	TABLE inf, fac DEPEND dt, celsius FROM -100 TO 100 WITH 200
	FROM i=0 TO 1 {
		tau[i] = vartau(v,i)
		inf[i] = varss(v,i)
:		fac[i] = (1 - exp(-dt/tau[i]))
	}
}



Loading data, please wait...