L5 PFC microcircuit used to study persistent activity (Papoutsi et al. 2014, 2013)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155057
Using a heavily constrained biophysical model of a L5 PFC microcircuit we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes.
References:
1 . Papoutsi A, Sidiropoulou K, Cutsuridis V, Poirazi P (2013) Induction and modulation of persistent activity in a layer V PFC microcircuit model. Front Neural Circuits 7:161 [PubMed]
2 . Papoutsi A, Sidiropoulou K, Poirazi P (2014) Dendritic nonlinearities reduce network size requirements and mediate ON and OFF states of persistent activity in a PFC microcircuit model. PLoS Comput Biol 10:e1003764 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite; Connectionist Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Working memory;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I A; I CAN; I Potassium; I R; I_AHP;
/
L5microcircuit
mechanism
ampa.mod
ampain.mod
cadyn.mod
cal.mod
can.mod
car.mod
cat.mod
gabaa.mod *
gabaain.mod
gabab.mod
h.mod
ican.mod
iks.mod
kadist.mod
kca.mod
kct.mod
kdr.mod *
naf.mod
nap.mod
netstim.mod *
NMDA.mod
NMDA_syn.mod
sinclamp.mod *
vecstim.mod *
                            
: Persistent Na+ channel
: from Durstewitz & Gabriel (2006), Cerebral Cortex

NEURON {
	SUFFIX Nap
	USEION na READ ena WRITE ina
	RANGE gnapbar, ina, gna
	RANGE DA_alphamshift,DA_betamshift
	RANGE DA_alphahfactor, DA_betahfactor
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gnapbar= 0.0022 (mho/cm2) <0,1e9>
	ena = 55 (mV)
	DA_alphamshift=0 : 2 for 100% DA, 0 otherwise
	DA_betamshift=0  : 5 for 100% DA,0 otherwise
	DA_alphahfactor=0: -.8e-5 for DA, 0 otherwise
	DA_betahfactor=0 : 0.014286-0.02 for DA, 0 otherwise
}

STATE {
	m h
}

ASSIGNED {
	ina (mA/cm2)
	minf hinf 
	mtau (ms)
	htau (ms)
	gna (mho/cm2)
	
}

INITIAL {
	rate(v)
	m = minf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gna = gnapbar*m*h
	ina = gna*(v-55)
	
}

DERIVATIVE states {
	rate(v)
	m' = (minf-m)/mtau
	h' = (hinf-h)/htau
}

UNITSOFF

FUNCTION malf( v){ LOCAL va 
	va=v+12+DA_alphamshift
	if (fabs(va)<1e-04){
	 va = va + 0.00001 }
	malf = (-0.2816*va)/(-1+exp(-va/9.3))
	
}


FUNCTION mbet(v(mV))(/ms) { LOCAL vb 
	vb=v-15+DA_betamshift
	if (fabs(vb)<1e-04){
	    vb = vb + 0.00001 }

	mbet = (0.2464*vb)/(-1+exp(vb/6))

}	


FUNCTION half(v(mV))(/ms) { LOCAL vc 
	vc=v+42.8477
	if (fabs(vc)<1e-04){
	   vc=vc+0.00001 }
        half= (2.8e-5+DA_alphahfactor)*(exp(-vc/4.0248))

}


FUNCTION hbet(v(mV))(/ms) { LOCAL vd
	vd=v-413.9284
	if (fabs(vd)<1e-04){
	vd=vd+0.00001 }
        hbet= (0.02+DA_betahfactor)/(1+exp(-vd/148.2589))
 
}




PROCEDURE rate(v (mV)) {LOCAL msum, hsum, ma, mb, ha, hb
	ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)
	
	msum = ma+mb
	minf = ma/msum
	mtau = 1/msum
	
	
	hsum = ha+hb
	hinf = ha/hsum
	htau = 1/hsum
}

	
UNITSON





Loading data, please wait...