Learning intrinsic excitability in Medium Spiny Neurons (Scheler 2014)

 Download zip file 
Help downloading and running models
Accession:155131
"We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. ... "
Reference:
1 . Scheler G (2014) Learning intrinsic excitability in medium spiny neurons F1000Research 2:88
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell;
Channel(s): I A; I K; I h; I K,Ca; I Calcium; I A, slow; I Cl, leak; I Ca,p;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s): Kv4.2 KCND2; Kv1.1 KCNA1; Kv1.2 KCNA2; Kv4.3 KCND3; Kv1.4 KCNA4; Kv1.3 KCNA3; Kv1.5 KCNA5; Kv3.3 KCNC3; Cav3.2 CACNA1H; Cav3.1 CACNA1G; Cav3.3 CACNA1I; Cav1.3 CACNA1D; Cav1.1 CACNA1S; Cav1.2 CACNA1C; KCa2.1 KCNN1; Kv2.1 KCNB1; Kv3.1 KCNC1; HCN Cnga1; Cav2.1 CACNA1A; Cav2.2 CACNA1B; KCa2.2 KCNN2; Kv1.9 Kv7.1 KCNQ1; IRK; NR2A GRIN2A; NR2B GRIN2B; Kv3.4 KCNC4; Kv4.1 KCND1;
Transmitter(s): Gaba; Glutamate; Ions;
Simulation Environment: MATLAB;
Model Concept(s): Intrinsic plasticity;
Implementer(s): Schumann, Johann [johann.schumann at gmail.com];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; Neostriatum medium spiny indirect pathway GABA cell; GabaA; AMPA; NMDA; I A; I K; I h; I K,Ca; I Calcium; I A, slow; I Cl, leak; I Ca,p; Gaba; Glutamate; Ions;
% 	Potassium channel
%
% 	modeled after Mahon and WB96
% 	using n and alpha, beta formulation
% 	returns also steady-state value
%
%	$Revision:$
%
function [I_K, dn, n_inf ] = ik(V_m, n)

E_K = -90;	% mV
g_K = 6;	% mS/cm^2 

	%
al_n = mylinexp(V_m, 0.01, -34, -10);
be_n = myexp(V_m, 0.125, -44, -80);
n_inf = al_n/(al_n + be_n);

dn = al_n*(1-n) - be_n*n;

I_K = g_K * (n^4)*(V_m - E_K);


Loading data, please wait...