Information transmission in cerebellar granule cell models (Rossert et al. 2014)

 Download zip file 
Help downloading and running models
Accession:156733
" ... In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit infoarmation faithfully and linearly in the frequency range of the vestibular-ocular reflex. ... "
Reference:
1 . Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J (2014) Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 8:304 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Markov-type model;
Implementer(s): Solinas, Sergio [solinas at unipv.it]; Roessert, Christian [christian.a at roessert.de];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell;
 
/
AnalyseGranCellRoessertEtAl14
                            
File not selected

<- Select file from this column.
Loading data, please wait...