Microcircuits of L5 thick tufted pyramidal cells (Hay & Segev 2015)

 Download zip file 
Help downloading and running models
Accession:156780
"... We simulated detailed conductance-based models of TTCs (Layer 5 thick tufted pyramidal cells) forming recurrent microcircuits that were interconnected as found experimentally; the network was embedded in a realistic background synaptic activity. ... Our findings indicate that dendritic nonlinearities are pivotal in controlling the gain and the computational functions of TTCs microcircuits, which serve as a dominant output source for the neocortex. "
Reference:
1 . Hay E, Segev I (2015) Dendritic Excitability and Gain Control in Recurrent Cortical Microcircuits. Cereb Cortex 25:3561-71 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Dendrite;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Laminar Connectivity; Orientation selectivity;
Implementer(s): Hay, Etay [etay.hay at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic GLU cell; GabaA; AMPA; NMDA; Glutamate; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I A, slow; Gaba; Glutamate;
/
HaySegev2014
models
readme.txt
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
ProbAMPANMDA2.mod *
ProbUDFsyn2.mod *
SK_E2.mod *
SKv3_1.mod *
cell1.asc *
microcircuit.hoc
                            
:Comment : LVA ca channel. Note: mtau is an approximation from the plots
:Reference : :		Avery and Johnston 1996, tau from Randall 1997
:Comment: shifted by -10 mv to correct for junction potential
:Comment: corrected rates using q10 = 2.3, target temperature 34, orginal 21

NEURON	{
	SUFFIX Ca_LVAst
	USEION ca READ eca WRITE ica
	RANGE gCa_LVAstbar, gCa_LVAst, ica
}

UNITS	{
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER	{
	gCa_LVAstbar = 0.00001 (S/cm2)
}

ASSIGNED	{
	v	(mV)
	eca	(mV)
	ica	(mA/cm2)
	gCa_LVAst	(S/cm2)
	mInf
	mTau
	hInf
	hTau
}

STATE	{
	m
	h
}

BREAKPOINT	{
	SOLVE states METHOD cnexp
	gCa_LVAst = gCa_LVAstbar*m*m*h
	ica = gCa_LVAst*(v-eca)
}

DERIVATIVE states	{
	rates()
	m' = (mInf-m)/mTau
	h' = (hInf-h)/hTau
}

INITIAL{
	rates()
	m = mInf
	h = hInf
}

PROCEDURE rates(){
  LOCAL qt
  qt = 2.3^((34-21)/10)

	UNITSOFF
		v = v + 10
		mInf = 1.0000/(1+ exp((v - -30.000)/-6))
		mTau = (5.0000 + 20.0000/(1+exp((v - -25.000)/5)))/qt
		hInf = 1.0000/(1+ exp((v - -80.000)/6.4))
		hTau = (20.0000 + 50.0000/(1+exp((v - -40.000)/7)))/qt
		v = v - 10
	UNITSON
}

Loading data, please wait...