Rhesus Monkey Layer 3 Pyramidal Neurons: Young vs aged PFC (Coskren et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. Tuning passive parameters for each model predicted significantly higher membrane resistance (Rm) in aged versus young neurons. This Rm increase alone did not account for the empirically observed fI-curves, but coupling these Rm values with subtle differences in morphology and membrane capacitance Cm did. The predicted differences in passive parameters (or other parameters with similar effects) are mathematically plausible, but must be tested empirically.
1 . Coskren PJ, Luebke JI, Kabaso D, Wearne SL, Yadav A, Rumbell T, Hof PR, Weaver CM (2015) Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. J Comput Neurosci 38:263-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
Gap Junctions:
Simulation Environment: NEURON;
Model Concept(s): Influence of Dendritic Geometry; Detailed Neuronal Models; Action Potentials; Aging/Alzheimer`s;
Implementer(s): Weaver, Christina [christina.weaver at fandm.edu];
Search NeuronDB for information about:  Neocortex V1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I A; I K; I M; I h; I K,Ca; I Calcium; I_AHP;
kvz_nature.mod *
max.mod *
naz_nature.mod *
origlen.mod *
peak.mod *
vsource.mod *
kvz_nature.c *
kvz_nature.lo *
libnrnmech.la *
max.c *
max.lo *
mod_func.c *
mod_func.lo *
naz_nature.c *
naz_nature.lo *
origlen.c *
origlen.lo *
peak.c *
peak.lo *
special *
vsource.c *
vsource.lo *
/* Created by Language version: 6.2.0 */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
extern int _method3;

#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
 	/*SUPPRESS 761*/
	/*SUPPRESS 762*/
	/*SUPPRESS 763*/
	/*SUPPRESS 765*/
	 extern double *getarg();
 /* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define val _p[0]
#define v _p[1]
#if MAC
#if !defined(v)
#define v _mlhv
#if !defined(h)
#define h _mlhh
#if defined(__cplusplus)
extern "C" {
 static int hoc_nrnpointerindex =  -1;
 static Datum* _extcall_thread;
 static Prop* _extcall_prop;
 /* external NEURON variables */
 /* declaration of user functions */
 static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
 extern void _nrn_setdata_reg(int, void(*)(Prop*));
 static void _setdata(Prop* _prop) {
 _extcall_prop = _prop;
 static void _hoc_setdata() {
 Prop *_prop, *hoc_getdata_range(int);
 _prop = hoc_getdata_range(_mechtype);
 /* connect user functions to hoc names */
 static VoidFunc hoc_intfunc[] = {
 "setdata_max", _hoc_setdata,
 0, 0
 /* declare global and static user variables */
 /* some parameters have upper and lower limits */
 static HocParmLimits _hoc_parm_limits[] = {
 static HocParmUnits _hoc_parm_units[] = {
 "val_max", "millivolt",
 /* connect global user variables to hoc */
 static DoubScal hoc_scdoub[] = {
 static DoubVec hoc_vdoub[] = {
 static double _sav_indep;
 static void _ba1() ;
 static void nrn_alloc(Prop*);
static void  nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
 /* connect range variables in _p that hoc is supposed to know about */
 static const char *_mechanism[] = {
extern Prop* need_memb(Symbol*);

static void nrn_alloc(Prop* _prop) {
	Prop *prop_ion;
	double *_p; Datum *_ppvar;
 	_p = nrn_prop_data_alloc(_mechtype, 2, _prop);
 	/*initialize range parameters*/
 	_prop->param = _p;
 	_prop->param_size = 2;
 static void _initlists();
 extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*f)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);

 void _max_reg() {
	int _vectorized = 1;
 	register_mech(_mechanism, nrn_alloc,(void*)0, (void*)0, (void*)0, nrn_init, hoc_nrnpointerindex, 1);
 _mechtype = nrn_get_mechtype(_mechanism[1]);
     _nrn_setdata_reg(_mechtype, _setdata);
  hoc_register_dparam_size(_mechtype, 0);
 	hoc_reg_ba(_mechtype, _ba1, 22);
 	hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
 	ivoc_help("help ?1 max /Users/cweaver/research/Neuron/Coskren/MorphologyPaperTwo/Scripts/NeuronMechanisms/x86_64/max.mod\n");
 hoc_register_limits(_mechtype, _hoc_parm_limits);
 hoc_register_units(_mechtype, _hoc_parm_units);
static int _reset;
static char *modelname = "";

static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
 static void _ba1(Node*_nd, double* _pp, Datum* _ppd, Datum* _thread, _NrnThread* _nt)  {
   double* _p; Datum* _ppvar; _p = _pp; _ppvar = _ppd;
  v = NODEV(_nd);
 if ( v > val ) {
     val = v ;

static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
  int _i; double _save;{
   val = v ;


static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
    _ni = _ml->_nodeindices;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
 v = _v;
 initmodel(_p, _ppvar, _thread, _nt);

static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{
} return _current;

static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
 double _break, _save;
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
    _ni = _ml->_nodeindices;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
 _p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
 _nd = _ml->_nodelist[_iml];
  if (use_cachevec) {
    _v = VEC_V(_ni[_iml]);
    _nd = _ml->_nodelist[_iml];
    _v = NODEV(_nd);
 _break = t + .5*dt; _save = t;


static void terminal(){}

static void _initlists(){
 double _x; double* _p = &_x;
 int _i; static int _first = 1;
  if (!_first) return;
_first = 0;

#if defined(__cplusplus)
} /* extern "C" */

Loading data, please wait...