Layer 5 Pyramidal Neuron (Shai et al., 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:180373
This work contains a NEURON model for a layer 5 pyramidal neuron (based on Hay et al., 2011) with distributed groups of synapses across the basal and tuft dendrites. The results of that simulation are used to fit a phenomenological model, which is also included in this file.
Reference:
1 . Shai AS, Anastassiou CA, Larkum ME, Koch C (2015) Physiology of layer 5 pyramidal neurons in mouse primary visual cortex: coincidence detection through bursting. PLoS Comput Biol 11:e1004090 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON; MATLAB;
Model Concept(s): Dendritic Action Potentials; Active Dendrites;
Implementer(s):
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; Glutamate;
/
ShaiEtAl2015
mod
Ca_HVA.mod *
Ca_LVAst.mod *
CaDynamics_E2.mod *
epsp.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
SK_E2.mod *
SKv3_1.mod *
                            
: SK-type calcium-activated potassium current
: Reference : Kohler et al. 1996

NEURON {
       SUFFIX SK_E2
       USEION k READ ek WRITE ik
       USEION ca READ cai
       RANGE gSK_E2bar, gSK_E2, ik
}

UNITS {
      (mV) = (millivolt)
      (mA) = (milliamp)
      (mM) = (milli/liter)
}

PARAMETER {
          v            (mV)
          gSK_E2bar = .000001 (mho/cm2)
          zTau = 1              (ms)
          ek           (mV)
          cai          (mM)
}

ASSIGNED {
         zInf
         ik            (mA/cm2)
         gSK_E2	       (S/cm2)
}

STATE {
      z   FROM 0 TO 1
}

BREAKPOINT {
           SOLVE states METHOD cnexp
           gSK_E2  = gSK_E2bar * z
           ik   =  gSK_E2 * (v - ek)
}

DERIVATIVE states {
        rates(cai)
        z' = (zInf - z) / zTau
}

PROCEDURE rates(ca(mM)) {
          if(ca < 1e-7){
	              ca = ca + 1e-07
          }
          zInf = 1/(1 + (0.00043 / ca)^4.8)
}

INITIAL {
        rates(cai)
        z = zInf
}

Loading data, please wait...