Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule GLU cell; Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Hippocampus CA3 interneuron basket GABA cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
begintemplate BC

ndend1=4
ndend2=4
ndend3=4
ndend4=4

public  pre_list, connect2target, subsets, is_art, is_connected
public vbc2gc, vmc2gc, vhc2gc, vgc2bc, vbc2bc, vmc2bc, vhc2bc, vgc2mc, vbc2mc, vmc2mc, vhc2mc, vgc2hc, vmc2hc
public soma, bcdend1, bcdend2, bcdend3, bcdend4
public all, adend, bdend, cdend, ddend
create soma, bcdend1[ndend1], bcdend2[ndend2], bcdend3[ndend3], bcdend4[ndend4]
objref pre_list
nst=10

objectvar stim[nst]
double stimdur[nst], stimdel[nst], stimamp[nst]
public stim, stimdur, stimamp, stimdel


objref syn
proc init() {
	pre_list = new List()
	subsets()
	temp()
	synapse()
}

objref all, adend, bdend, cdend, ddend

proc subsets() { local i
	objref all, adend, bdend, cdend, ddend
	all = new SectionList()
	soma all.append()
	for i=0, 3 bcdend1 [i] all.append()
	for i=0, 3 bcdend2 [i] all.append()
	for i=0, 3 bcdend3 [i] all.append()
	for i=0, 3 bcdend4 [i] all.append()

	adend  = new SectionList()
	bcdend1 [0] adend.append()
	bcdend2 [0] adend.append()
	bcdend3 [0] adend.append()
	bcdend4 [0] adend.append()

	bdend  = new SectionList()
	bcdend1 [1] bdend.append()
	bcdend2 [1] bdend.append()
	bcdend3 [1] bdend.append()
	bcdend4 [1] bdend.append()

	cdend  = new SectionList()
	bcdend1 [2] cdend.append()
	bcdend2 [2] cdend.append()
	bcdend3 [2] cdend.append()
	bcdend4 [2] cdend.append()

	ddend  = new SectionList()
	bcdend1 [3] ddend.append()
	bcdend2 [3] ddend.append()
	bcdend3 [3] ddend.append()
	bcdend4 [3] ddend.append()
}

proc temp() {

	soma {nseg=1 L=20 diam=15} // changed L & diam
		
	bcdend1 [0] {nseg=1 L=75 diam=4}	// bcdend 1 and 2 are apical
	bcdend1 [1] {nseg=1 L=75 diam=3}
	bcdend1 [2] {nseg=1 L=75 diam=2}
 	bcdend1 [3] {nseg=1 L=75 diam=1}

	bcdend2 [0] {nseg=1 L=75 diam=4}
	bcdend2 [1] {nseg=1 L=75 diam=3}
	bcdend2 [2] {nseg=1 L=75 diam=2}
	bcdend2 [3] {nseg=1 L=75 diam=1}
 		 
	bcdend3 [0] {nseg=1 L=50 diam=4} 	// bcdend 3 and 4 are basal
	bcdend3 [1] {nseg=1 L=50 diam=3}
	bcdend3 [2] {nseg=1 L=50 diam=2}
	bcdend3 [3] {nseg=1 L=50 diam=1} 
	
	bcdend4 [0] {nseg=1 L=50 diam=4}
	bcdend4 [1] {nseg=1 L=50 diam=3}
	bcdend4 [2] {nseg=1 L=50 diam=2}
	bcdend4 [3] {nseg=1 L=50 diam=1} 	

    
	forsec all {
		insert ccanl
		   catau_ccanl = 10
		   caiinf_ccanl = 5.e-6
		
		insert borgka
		   gkabar_borgka=0.00015
		
		insert nca  // HAV-N- Ca channel
		   gncabar_nca=0.0008   //check to modify- original 0.004
		
		insert lca 
		   glcabar_lca=0.005
		
		insert gskch
		   gskbar_gskch=0.000002
		
		insert cagk
		   gkbar_cagk=0.0002
	}

	soma {
		insert ichan2  //ildikos ichan
		   gnatbar_ichan2=0.12  //original 0.030 to .055 
		   gkfbar_ichan2=0.013  //original 0.015
		   gl_ichan2 = 0.00018
		   cm=1.4
	} 

	forsec adend {
		insert ichan2
		   gnatbar_ichan2=0.12  //original 0.015
		   gkfbar_ichan2=0.013
		   gl_ichan2 = 0.00018
		   cm=1.4
	}		
	
	forsec	bdend {
		insert ichan2
		   gnatbar_ichan2=0.0
		   gkfbar_ichan2=0.00
		   gl_ichan2 = 0.00018
		   cm=1.4
	}
		
	forsec 	cdend {
		insert ichan2
		   gnatbar_ichan2=0.0
		   gkfbar_ichan2=0.00
		   gl_ichan2 = 0.00018
		   cm=1.4
	}

	forsec	ddend {
		insert ichan2
		   gnatbar_ichan2=0.0
		   gkfbar_ichan2=0.00
		   gl_ichan2 = 0.00018
		   cm=1.4
	}

	forsec all {
		Ra=100
	}
	forsec all {
		enat = 55 
		ekf = -90  
		ek=-90  
		elca=130	
		esk=-90
		el_ichan2 =-60.06
		cao_ccanl=2 
	}  // make catau slower70e-3 	cao=2 cai=50.e-6 


	connect bcdend1[0](0), soma(1)
	connect bcdend2[0](0), soma(1)
	connect bcdend3[0](0), soma(0)
	connect bcdend4[0](0), soma(0)
	for i=1,3 {
		connect bcdend1[i](0), bcdend1[i-1](1)
	}
	for i=1,3 {
		connect bcdend2[i](0), bcdend2[i-1](1)
	}
	for i=1,3 {
		connect bcdend3[i](0), bcdend3[i-1](1)
	}
	for i=1,3 {
		connect bcdend4[i](0), bcdend4[i-1](1)
	}


//for i=0,0 {
//stimdel[i]=1000
//stimdur[i]=200
//stimamp[i]=0.5

/* 0.4 stim when we want the cell to fire with regular spikes */

//soma stim[i] = new IClamp(0.5)
//stim.del[i]=stimdel[i]
//stim.dur[i]=stimdur[i]
//stim.amp[i]=stimamp[i]
//}
}

objref syn_  
proc synapse() {

	bcdend1 [3] syn_ = new Exp2Syn(0.5)	//PP(AMPA) syn_ to apical dist dend Dingledine '95       0
	syn_.tau1 = 2	
	syn_.tau2 = 6.3	
	syn_.e = 0 // *** check Tau rise 2ms is the rise time
	pre_list.append(syn_)

	bcdend2 [3] syn_ = new Exp2Syn(0.5)	//PP(AMPA) syn_ to apical dist dend Dingledine '95       1
	syn_.tau1 = 2	
	syn_.tau2 = 6.3	
	syn_.e = 0  // *** check Tau rise 2ms is the rise time
	pre_list.append(syn_)

	bcdend1 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend Geiger '97			2
	syn_.tau1 = .3	
	syn_.tau2 = .6	
	syn_.e = 0
	pre_list.append(syn_)

	bcdend2 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend Geiger '97			3
	syn_.tau1 = .3	
	syn_.tau2 = .6	
	syn_.e = 0
	pre_list.append(syn_)

	bcdend3 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend Geiger '97			4
	syn_.tau1 = .3	
	syn_.tau2 = .6	
	syn_.e = 0
	pre_list.append(syn_)

	bcdend4 [0] syn_ = new Exp2Syn(0.5)	//GC(AMPA) syn_ to prox dend Geiger '97			5
	syn_.tau1 = .3	
	syn_.tau2 = .6	
	syn_.e = 0
	pre_list.append(syn_)

	bcdend1 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to apical IML dend			6
	syn_.tau1 = 0.9	
	syn_.tau2 = 3.6	
	syn_.e = 0 // *** Estimated based on CA3>BC min stim Dingledine '95
	pre_list.append(syn_)

	bcdend2 [1] syn_ = new Exp2Syn(0.5)	//MC(AMPA) syn_ to apical IML dend			7
	syn_.tau1 = 0.9	
	syn_.tau2 = 3.6	
	syn_.e = 0 // *** Estimated based on CA3>BC min stim Dingledine '95
	pre_list.append(syn_)

	bcdend1 [1] syn_ = new Exp2Syn(0.5)	//BC(GABA) syn_ to apical IML dend Bartos		8
	syn_.tau1 = 0.16		
	syn_.tau2 = 1.8	
	syn_.e = -70
	pre_list.append(syn_)

	bcdend2 [1] syn_ = new Exp2Syn(0.5)	//BC(GABA) syn_ to apical IML dend Bartos		9
	syn_.tau1 = 0.16		
	syn_.tau2 = 1.8	
	syn_.e = -70
	pre_list.append(syn_)

	bcdend1 [3] syn_ = new Exp2Syn(0.5)	//HIPP(GABA) syn_ to apical distal dend 			10
	syn_.tau1 = 0.4	
	syn_.tau2 = 5.8	
	syn_.e = -70 // *** Estimated as HIPP>GC
	pre_list.append(syn_)

	bcdend2 [3] syn_ = new Exp2Syn(0.5)	//HIPP(GABA) syn_ to apical distal dend 			11
	syn_.tau1 = 0.4	
	syn_.tau2 = 5.8	
	syn_.e = -70 // *** Estimated as HIPP>GC
	pre_list.append(syn_)
	
  	soma syn_ = new MyExp2Syn(0.5)  		// GABA-A	Septum					12
    	syn_.tau1 = 1
    	syn_.tau2 = 8
    	syn_.e = -75
    	pre_list.append(syn_)	
    		

// Total of 13 synapses 	0,1 PP; 	2-5 GC; 	6,7 MC; 	8,9 BC; 	10,11 HIPP;        12 septum
}

obfunc connect2target() { localobj nc //$o1 target point process, optional $o2 returned NetCon
  	soma nc = new NetCon(&v(1), $o1)
  	nc.threshold = -10
  	if (numarg() == 2) { $o2 = nc } // for backward compatibility
  	return nc
}

func is_art()  { return 0 }

endtemplate BC

Loading data, please wait...