CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184054
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
Reference:
1 . Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I L high threshold; I K; Ca pump; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Synaptic Integration; Calcium dynamics; Conductance distributions;
Implementer(s): Cembrowski, Mark S [cembrowskim at janelia.hhmi.org]; Hsu, Ching-Lung [hsuc at janelia.hhmi.org];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I L high threshold; I K; I Sodium; Ca pump; Glutamate;
/
fullMorphCaLTP8
fullMorphCaLTP8
calH.mod
cdp.mod
id.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
spgen2.mod
analyseTBSCC.hoc
channelParameters.hoc
displayPanels.hoc
doTBSStimCC.hoc
getVoltageIntegral.hoc
init.hoc
initializationAndRun.hoc
morphology_ri06.nrn *
naceaxon.nrn *
plotTBSCC.hoc
preallocate.hoc
resetNSeg.hoc *
runTBSCC.hoc
seclists.hoc
start.hoc
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current ----------
: M.Migliore Jun 1997

NEURON {
        SUFFIX kap
        USEION k READ ek WRITE ik
        RANGE gkabar,gka,ik
        RANGE ninf,linf,taul,taun
        RANGE vhalfn,vhalfl
        GLOBAL lmin,nscale,lscale
}

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (mol) = (1)
}

PARAMETER {
        dt                              (ms)
        v                               (mV)
        ek                              (mV)
        celsius                         (degC)

        temp    = 24                    (degC)

        gkabar                          (mho/cm2)

        vhalfn  = 11                    (mV)
        a0n     = 0.05                  (/ms)
        zetan   = -1.5                  (1)
        gmn     = 0.55                  (1)
        pw      = -1                    (1)
        tq      = -40                   (mV)
        qq      = 5                     (mV)
        nmin    = 0.1                   (ms)
        nscale  = 1

        vhalfl  = -56                   (mV)
        a0l     = 0.05                  (/ms)
        zetal   = 3                     (1)
        lmin    = 2                     (ms)
        lscale  = 1

        q10     = 5
}

STATE {
        n
        l
}

ASSIGNED {
        ik (mA/cm2)
        ninf
        linf      
        taul  (ms)
        taun  (ms)
        gka   (mho/cm2)
        qt
}

INITIAL {
        rates(v)
        n=ninf
        l=linf
        gka = gkabar*n*l
        ik = gka*(v-ek)
}        

BREAKPOINT {
        SOLVE states METHOD cnexp
        gka = gkabar*n*l
        ik = gka*(v-ek)
}

DERIVATIVE states {
        rates(v)
        n' = (ninf-n)/taun
        l' = (linf-l)/taul
}

FUNCTION alpn(v(mV)) {
LOCAL zeta
        zeta=zetan+pw/(1+exp((v-tq)/qq))
        alpn = exp(zeta*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius))) 
}

FUNCTION betn(v(mV)) {
LOCAL zeta
        zeta=zetan+pw/(1+exp((v-tq)/qq))
        betn = exp(zeta*gmn*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius))) 
}


FUNCTION alpl(v(mV)) {
        alpl = exp(zetal*(v-vhalfl)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius))) 
}

FUNCTION betl(v(mV)) {
        betl = exp(zetal*(v-vhalfl)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/mol/degC)*(273.16(degC)+celsius))) 
}


PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10(degC))
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
        if (taun<nmin) {taun=nmin}
        taun=taun/nscale

        a = alpl(v)
        linf = 1/(1 + a)
        taul = 0.26(ms/mV)*(v+50)
        if (taul<lmin) {taul=lmin}
        taul=taul/lscale
}

Loading data, please wait...