CA1 pyramidal neuron: Dendritic Na+ spikes are required for LTP at distal synapses (Kim et al 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184054
This model simulates the effects of dendritic sodium spikes initiated in distal apical dendrites on the voltage and the calcium dynamics revealed by calcium imaging. It shows that dendritic sodium spike promotes large and transient calcium influxes via NMDA receptor and L-type voltage-gated calcium channels, which contribute to the induction of LTP at distal synapses.
Reference:
1 . Kim Y, Hsu CL, Cembrowski MS, Mensh BD, Spruston N (2015) Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. Elife [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I L high threshold; I K; Ca pump; I Sodium;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Ion Channel Kinetics; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Synaptic Integration; Calcium dynamics; Conductance distributions;
Implementer(s): Cembrowski, Mark S [cembrowskim at janelia.hhmi.org]; Hsu, Ching-Lung [hsuc at janelia.hhmi.org];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; I L high threshold; I K; I Sodium; Ca pump; Glutamate;
/
fullMorphCaLTP8
fullMorphCaLTP8
calH.mod
cdp.mod
id.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
spgen2.mod
analyseTBSCC.hoc
channelParameters.hoc
displayPanels.hoc
doTBSStimCC.hoc
getVoltageIntegral.hoc
init.hoc
initializationAndRun.hoc
morphology_ri06.nrn *
naceaxon.nrn *
plotTBSCC.hoc
preallocate.hoc
resetNSeg.hoc *
runTBSCC.hoc
seclists.hoc
start.hoc
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (mol) = (1)

}

NEURON {
        SUFFIX kdr
        USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar,ik
        RANGE ninf,taun
        GLOBAL nscale
}

PARAMETER {
        dt                      (ms)
        v                       (mV)
        ek                      (mV)    : must be explicitely def. in hoc
        celsius                 (degC)

        temp    = 24            (degC)

        gkdrbar = 0.003         (mho/cm2)

        vhalfn  = 13            (mV)
        a0n     = 0.02          (/ms)
        zetan   = -3            (1)
        gmn     = 0.7           (1)

        nmin    = 1             (ms)
        q10     = 1
        nscale  = 1
}

STATE {
        n
}

ASSIGNED {
        ik                      (mA/cm2)
        ninf
        gkdr                    (mho/cm2)
        taun                    (ms)
}

INITIAL {
        rates(v)
        n=ninf
        gkdr = gkdrbar*n
        ik = gkdr*(v-ek)
}        

BREAKPOINT {
        SOLVE states METHOD cnexp
        gkdr = gkdrbar*n
        ik = gkdr*(v-ek)
}

DERIVATIVE states {
        rates(v)
        n' = (ninf-n)/taun
}

FUNCTION alpn(v(mV)) {
        alpn = exp(zetan*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

FUNCTION betn(v(mV)) {
        betn = exp(zetan*gmn*(v-vhalfn)*1.e-3(V/mV)*9.648e4(coulomb/mol)/(8.315(joule/degC/mol)*(273.16(degC)+celsius))) 
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-temp)/10(degC))
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
        if (taun<nmin) {taun=nmin}
        taun=taun/nscale
}















Loading data, please wait...