Advanced search
SenseLab
SimToolDB
ModelDB Help
User account
Login
Register
Find models by
Model name
First author
Each author
Region(circuits)
Find models for
Cell type
Current
Receptor
Gene
Transmitters
Concept
Simulators
Methods
Find models of
Realistic Networks
Neurons
Electrical synapses (gap junctions)
Chemical synapses
Ion channels
Neuromuscular junctions
Axons
Pathophysiology
Other resources
SenseLab mailing list
ModelDB related resources
Computational neuroscience ecosystem
Models in a git repository
Cerebellar nuclear neuron (Sudhakar et al., 2015)
 
Download zip file
Help downloading and running models
Model Information
Model File
Citations
Versions on GitHub
Accession:
185513
"... In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. ..."
Reference:
1 .
Sudhakar SK, Torben-Nielsen B, De Schutter E (2015) Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.
PLoS Comput Biol
11
:e1004641
[
PubMed
]
Model Information
(Click on a link to find other models with that property)
Model Type:
Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cerebellum;
Cell Type(s):
Cerebellum deep nucleus neuron;
Channel(s):
I Na,p;
I T low threshold;
I h;
I Sodium;
Gap Junctions:
Receptor(s):
NMDA;
Glutamate;
Gaba;
Gene(s):
Transmitter(s):
Gaba;
Glutamate;
Simulation Environment:
NEURON;
Model Concept(s):
Rate-coding model neurons;
Rebound firing;
Implementer(s):
Search NeuronDB
for information about:
NMDA
;
Glutamate
;
Gaba
;
I Na,p
;
I T low threshold
;
I h
;
I Sodium
;
Gaba
;
Glutamate
;
Download the displayed file
/
SudhakarEtAl2015
readme.html
CaConc.mod
*
Other models using CaConc.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
CaHVA.mod
*
Other models using CaHVA.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
CaL.mod
CalConc.mod
*
Other models using CalConc.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
CaLVA.mod
*
Other models using CaLVA.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
DCNsyn.mod
*
Other models using DCNsyn.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
DCNsynGABA.mod
DCNsynNMDA.mod
*
Other models using DCNsynNMDA.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
fKdr.mod
*
Other models using fKdr.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
GammaStim.mod
*
Other models using GammaStim.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
h.mod
*
Other models using h.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
Ifluct8.mod
*
Other models using Ifluct8.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
NaF.mod
*
Other models using NaF.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
NaP.mod
*
Other models using NaP.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
pasDCN.mod
*
Other models using pasDCN.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
SK.mod
*
Other models using SK.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
sKdr.mod
*
Other models using sKdr.mod:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
TNC.mod
vecevent.mod
*
Other models using vecevent.mod:
Brain networks simulators - a comparative study (Tikidji-Hamburyan et al 2017)
Distal inhibitory control of sensory-evoked excitation (Egger, Schmitt et al. 2015)
MEC layer II stellate cell: Synaptic mechanisms of grid cells (Schmidt-Hieber & Hausser 2013)
Mitral cell activity gating by respiration and inhibition in an olfactory bulb NN (Short et al 2016)
Mitral cell activity gating by respiration and inhibition in an olfactory bulb NN (Short et al 2016)
Model of the cerebellar granular network (Sudhakar et al 2017)
Phase response theory in sparsely + strongly connected inhibitory NNs (Tikidji-Hamburyan et al 2019)
Phase response theory in sparsely + strongly connected inhibitory NNs (Tikidji-Hamburyan et al 2019)
cellids.dat
cellids_n.dat
datasp_ex1.dat
datasp1.dat
DCN_init_model1.hoc
DCN_init_model2.hoc
DCN_init_model2_highgain.hoc
DCN_init_model2_lowgain.hoc
DCN_init_model2_medgain.hoc
DCN_init_model3.hoc
DCN_mechs1.hoc
*
Other models using DCN_mechs1.hoc:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
DCN_mechs2.hoc
DCN_morph.hoc
*
Other models using DCN_morph.hoc:
KV1 channel governs cerebellar output to thalamus (Ovsepian et al. 2013)
STD-dependent and independent encoding of Input irregularity as spike rate (Luthman et al. 2011)
DCN_params.hoc
l_ex1.dat
l1.dat
model1_params.hoc
model2_params.hoc
model2_params_highgain.hoc
model2_params_lowgain.hoc
model2_params_medgain.hoc
model3_params.hoc
mosinit.hoc
pausebeg.dat
pausebeg_n.dat
screenshot.png
load_file("nrngui.hoc") x=1 load_file("DCN_init_model2_lowgain.hoc")
Loading data, please wait...