ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/187603.

Inhibition of bAPs and Ca2+ spikes in a multi-compartment pyramidal neuron model (Wilmes et al 2016)

 Download zip file 
Help downloading and running models
Accession:187603
"Synaptic plasticity is thought to induce memory traces in the brain that are the foundation of learning. To ensure the stability of these traces in the presence of further learning, however, a regulation of plasticity appears beneficial. Here, we take up the recent suggestion that dendritic inhibition can switch plasticity of excitatory synapses on and off by gating backpropagating action potentials (bAPs) and calcium spikes, i.e., by gating the coincidence signals required for Hebbian forms of plasticity. We analyze temporal and spatial constraints of such a gating and investigate whether it is possible to suppress bAPs without a simultaneous annihilation of the forward-directed information flow via excitatory postsynaptic potentials (EPSPs). In a computational analysis of conductance-based multi-compartmental models, we demonstrate that a robust control of bAPs and calcium spikes is possible in an all-or-none manner, enabling a binary switch of coincidence signals and plasticity. ..."
Reference:
1 . Wilmes KA, Sprekeler H, Schreiber S (2016) Inhibition as a Binary Switch for Excitatory Plasticity in Pyramidal Neurons. PLoS Comput Biol 12:e1004768 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex; Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Dendritic Action Potentials; Synaptic Plasticity; Synaptic Integration;
Implementer(s): Wilmes, Katharina A. [katharina.wilmes at googlemail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell;
#!/usr/bin/env python

"""produces data for table with voltage traces in Figures 3A and 4A,
"""

# _title_     : traces.py
# _author_     : Katharina Anna Wilmes
# _mail_     : katharina.anna.wilmes __at__ cms.hu-berlin.de


# --Imports--
import sys
import os

import math
import matplotlib.pyplot as plt
import numpy as np
from time import time
import neuron
from neuron import h

from neuronmodel import *
from config_traces_ca import *
from sim import *

# set path for saving data
path = './'


NO_REPS = 1
RESET = True
DT=0.1 # ms, set the integration step
POST_AMP = 0.3# nA, amplitude of current injection to trigger AP/bAP
WARM_UP=1000 # ms, until steady state
AP_DELAY = 4 #ms, AP needs 4ms after stimulation to become initiated
identifier = '2015-01-13-00h00m00s' # folder name
savepath = '%s%s'%(path,identifier)
if not os.path.exists(savepath):
	os.mkdir(savepath)
 
def _get_current_trace(freq,delta_t,t_stop,pre=False,test=True) :
    trace = np.zeros(t_stop/DT)
    for i in range(NO_REPS) :
        if(pre) :
            start_t = (0 + i* (1000.0/freq) + WARM_UP)
        else :
            start_t = (0 + delta_t - AP_DELAY + i* (1000.0/freq) + WARM_UP)
        end_t = (start_t+2)
        if(test) :
            print 'start_t=%g, end_t=%g (t_stop=%g, len(trace)=%f)' % (start_t,end_t,t_stop,len(trace))
        trace[start_t/DT:end_t/DT] = POST_AMP
    return trace

def create_syn(syn_type,pos, thresh):
    syn = h.ExpSynSTDP(pos)
    syn.thresh = thresh
    return syn
    
def traces(t, AP, AP_distal, AP_oblique, AP_basal, inh_times, scen, path=None):

    site = [AP, AP_distal, AP_oblique, AP_basal]
    sitename = ['axon','distal','oblique','basal']
    # Plot data
    fig = plt.figure(1)
    plt.clf()
    plt.axes([0.125,0.2,0.95-0.125,0.95-0.2])
    a = np.ones((len(inh_times))) * -75

    for i in range(1,5):
        ax = plt.subplot(2,2,i, autoscale_on = False)
        p2 = plt.plot(t,site[i-1],'k', lw=1, label = 'scenario')
        plt.hold(True)
        plt.plot(inh_times, a, '|',color = '#FF8300')
        plt.axis(xmin = 990, xmax = 1100, ymin=-80, ymax=50)
        plt.yticks(np.arange(-80,50,10))
        plt.title(sitename[i-1])
    plt.savefig('%s/publish%s.eps'%(path, scen))


def main():

    my_rawdata = {}

    # inputs
    freq = params['Input']['freq'].value
    wee = params['Input']['wee'].value
    wee_strong = params['Input']['wee_strong'].value

    # Scenario
    scen = params['Synapse']['scen'].value
    #shunt_pos = params['Synapse']['shunt_pos'].value
    delta_t = params['STDP']['delta_t'].value

    sim_params = params['sim']

    # inhibition
    shunt_params = params['shunt']
    distal_shunt_weight = params['shunt']['distal_shunt_weight'].value
    proximal_shunt_weight = params['shunt']['proximal_shunt_weight'].value
    basal_shunt_weight = params['shunt']['basal_shunt_weight'].value
    distal_shunt_pos = params['shunt']['distal_shunt_pos'].value
    proximal_shunt_pos = params['shunt']['proximal_shunt_pos'].value
    basal_shunt_pos = params['shunt']['basal_shunt_pos'].value
    distal_shunt_compartment = params['shunt']['distal_shunt_compartment']
    proximal_shunt_compartment = params['shunt']['proximal_shunt_compartment']
    basal_shunt_compartment = params['shunt']['basal_shunt_compartment']
    basal_shunt_delay = params['shunt']['basal_shunt_delay'].value
    freq_i = params['Synapse']['interneuron_frequency'].value
    reps_inh = params['Synapse']['interneuron_reps'].value
    shunt_delay = params['shunt']['shunt_delay'].value
    shunt_pos_range = np.arange(4)

    source = False

    for shunt_pos in shunt_pos_range:
    
        cell = Neuron()
        sim = Simulation(cell,sim_params)
        sim.dt = DT
        sim.v_init = -70
        total_time = WARM_UP+NO_REPS*(1000.0/freq)+100
        interval = 1000.0/freq
    
    
        # somatic stimulation
        ic = h.IClamp(cell.soma(0.5))
        ic.delay = 0
        ic.dur=1e9
        #print 'testing freq F=%g (t_stop=%i)' % (freq,total_time)
        current_trace = _get_current_trace(freq,delta_t,total_time,pre=False)
        current_vec = h.Vector(current_trace)
        current_vec.play(ic._ref_amp,DT)
    
        # additional distal excitation to trigger calcium spike
        if scen == 3:
            syn = h.Exp2Syn(cell.branches[0](0.1))
            weight = wee
            syn.e = 0
            syn.tau1 = 0.5
            syn.tau2 = 2
            exstim = h.NetStim()
            exstim.number = NO_REPS
            exstim.interval = interval
            exstim.start = WARM_UP
            exstim.noise= 0
            nc = h.NetCon(exstim,syn,0,0,weight)
    
    
    
        inh_delay = WARM_UP + delta_t - AP_DELAY + shunt_delay
        basal_inh_delay = WARM_UP + delta_t - AP_DELAY + basal_shunt_delay
        

        # inhibition
        if shunt_pos == 0:
            print "no inhibition"
        elif shunt_pos == 1: # distal
            sim.set_Shunt(shunt_params, distal_shunt_pos, distal_shunt_weight, distal_shunt_compartment,source,inh_delay,NO_REPS, interval)
        elif shunt_pos == 2: # proximal
            sim.set_Shunt(shunt_params, proximal_shunt_pos, proximal_shunt_weight, proximal_shunt_compartment,source,inh_delay,NO_REPS,interval)
        elif shunt_pos == 3: # basal
            for i in np.arange(NO_REPS):
                sim.set_Shunt(shunt_params, basal_shunt_pos, basal_shunt_weight,basal_shunt_compartment,source,basal_inh_delay+i*interval,no_reps=reps_inh,interval=1000.0/freq_i)
        else:
            raise ValueError
    
        # recording
        trec = h.Vector()
        trec.record(h._ref_t)
        vrec = h.Vector()
        vrec.record(cell.soma(0.5)._ref_v)
        varec = h.Vector()
        varec.record(cell.ais(0.5)._ref_v)
        vdrec = h.Vector()
        vdrec.record(cell.branches[0](0.5)._ref_v)
        vbrec = h.Vector()
        vbrec.record(cell.basal_main(0.5)._ref_v)
        vorec = h.Vector()
        vorec.record(cell.oblique_branch(0.9)._ref_v)
        if scen == 3:
            currentrec = h.Vector()
            currentrec.record(syn._ref_i)
    
    
        if not shunt_pos == 0:
            ipsc = neuron.h.Vector()
            ipsc.record(sim.shunt[0]._ref_i)
            sim.set_synaptic_current_rec()
            sim.set_synaptic_cond_rec()
    
        # record state vars
        vit2m, vit2h, vscam, vscah, vkcan, vna3dendm, vna3dendh = [h.Vector() for x in xrange(7)]
        vit2m.record(cell.branches[0](0.5).it2._ref_m)
        vit2h.record(cell.branches[0](0.5).it2._ref_h)
        vscam.record(cell.branches[0](0.5).sca._ref_m)
        vscah.record(cell.branches[0](0.5).sca._ref_h)
        vkcan.record(cell.branches[0](0.5).kca._ref_n)
        vna3dendm.record(cell.branches[0](0.5).na3dend._ref_m)
        vna3dendh.record(cell.branches[0](0.5).na3dend._ref_h)
    
    
        sim.sim_time = total_time
    
        if not shunt_pos == 0:
            sim.set_synaptic_recording(switch=False,all=False)
    
        sim.go()
        t = np.array(trec)
        v = np.array(vrec)
        vd = np.array(vdrec)
        vb = np.array(vbrec)
        vo = np.array(vorec)
        va = np.array(varec)
    
        it2m = np.array(vit2m)
        it2h = np.array(vit2h)
        scam = np.array(vscam)
        scah = np.array(vscah)
        kcan = np.array(vkcan)
        na3dendm = np.array(vna3dendm)
        na3dendh = np.array(vna3dendh)
    
        if not shunt_pos == 0:
            inh_rec = sim.get_synaptic_recording('dendritic_inh')
            ipsc_rec = sim.get_synaptic_current_rec()
            inhcond = sim.get_synaptic_cond_rec()
        else:
            inh_rec = np.zeros(1)
            ipsc_rec = np.zeros(1)
    
        step = np.array(current_vec)
        x = np.arange(len(step))
        plt.figure()
        plt.plot(x*DT,step,'k',label='vd')
        plt.xlim((990,1100))
        plt.ylim((0,3.6))
        plt.xlabel("Time [ms]", fontsize = 'large')
        plt.ylabel("Current [nA]", fontsize = 'large')
        plt.savefig('%s/step.eps'%(savepath))
    
        if (scen == 3) and (shunt_pos == 0):
            crec = np.array(currentrec)
            x = np.arange(len(crec))
            plt.figure()
            plt.plot(x*DT,abs(crec),'r',label='vd')
            plt.xlim((990,1100))
            plt.ylim((0,3.6))
            plt.xlabel("Time [ms]", fontsize = 'large')
            plt.ylabel("Current [nA]", fontsize = 'large')
            plt.savefig('%s/crec_scen%d_shuntpos%d.eps'%(savepath,scen,shunt_pos))
        plt.figure()
        plt.plot(t,v,'k',label='v')
        plt.hold(True)
        plt.plot(t,vd,'r',label='vd')
        plt.xlabel("Time [ms]", fontsize = 'large')
        plt.xlim((990,1100))
        plt.ylim((-80,40))
        plt.ylabel("Voltage [mV]", fontsize = 'large')
        plt.savefig('%s/vrec_scen%d_shuntpos%d.eps'%(savepath,scen,shunt_pos))
    
        plt.figure()
        plt.plot(t,it2m,'k-',label='v')
        plt.hold(True)
        plt.plot(t,it2h,'k--',label='v')
        plt.plot(t,scam,'r-',label='v')
        plt.plot(t,scah,'r--',label='v')
        plt.plot(t,kcan,'g-',label='vd')
        plt.plot(t,na3dendm,'m-',label='v')
        plt.plot(t,na3dendh,'m--',label='v')
    
        plt.xlabel("Time [ms]", fontsize = 'large')
        plt.xlim((990,1100))
        #plt.ylim((-80,40))
        plt.ylabel("state", fontsize = 'large')
        plt.savefig('%s/statevars_scen%d_shuntpos%d.eps'%(savepath,scen,shunt_pos))
    

        traces(t,va,vd,vo,vb,inh_rec,"shunt_%d"%(shunt_pos),savepath)
            
    my_rawdata['t'] = t
    my_rawdata['v'] = v
    my_rawdata['vd'] = vd
    my_rawdata['vb'] = vb
    my_rawdata['vo'] = vo
    my_rawdata['va'] = va
    my_rawdata['it2m'] = it2m
    my_rawdata['it2h'] = it2h
    my_rawdata['scam'] = scam
    my_rawdata['scah'] = scah
    my_rawdata['kcan'] = kcan
    my_rawdata['na3dendm'] = na3dendm
    my_rawdata['na3dendh'] = na3dendh
    my_rawdata['inh_times'] = inh_rec
    if not shunt_pos == 0:
        my_rawdata['ipsc'] = ipsc_rec
        my_rawdata['inh_cond'] = inhcond



    #my_rawdata['currentv'] = currentv
    rawdata = {'raw_data': my_rawdata}

    return rawdata


if __name__ == '__main__':

    rawdata = main()

Loading data, please wait...