ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/187610.

CA1 pyramidal neuron synaptic integration (Bloss et al. 2016)

 Download zip file 
Help downloading and running models
Accession:187610
"... We examined synaptic connectivity between molecularly defined inhibitory interneurons and CA1 pyramidal cell dendrites using correlative light-electron microscopy and large-volume array tomography. We show that interneurons can be highly selective in their connectivity to specific dendritic branch types and, furthermore, exhibit precisely targeted connectivity to the origin or end of individual branches. Computational simulations indicate that the observed subcellular targeting enables control over the nonlinear integration of synaptic input or the initiation and backpropagation of action potentials in a branchselective manner. Our results demonstrate that connectivity between interneurons and pyramidal cell dendrites is more precise and spatially segregated than previously appreciated, which may be a critical determinant of how inhibition shapes dendritic computation."
Reference:
1 . Bloss EB, Cembrowski MS, Karsh B, Colonell J, Fetter RD, Spruston N (2016) Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. Neuron 89:1016-30 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Cembrowski, Mark S [cembrowskim at janelia.hhmi.org];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; NMDA; Gaba; I Na,t; I K;
/
arrayTomography
README.txt
dists.mod *
eff.mod *
exc.mod
id.mod *
inh.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
syns.mod *
activateExcitation.hoc
activateInhibition.hoc
addChannels.hoc *
addExcitation.hoc
addVgatInhibition.hoc
channelParameters.hoc *
flagVgatInhibition.hoc
getBranchOrder.hoc *
idMorph.hoc
inhibitionBiophysics.hoc
initializationAndRun.hoc *
loadMorph.hoc *
mosinit.hoc *
naceaxon.nrn *
processMorph.hoc *
proofreadMorph.hoc *
resetNSeg.hoc *
start.hoc
synHelperScripts.hoc
twinApical.swc *
                            
// ADD VGAT+ SYNAPSES TO MORPHOLOGY.

// Preallocate objects for inhibition.
totVgatAt = 100000
objref nsVgatAt[totVgatAt],ncVgatAt[totVgatAt],synVgatAt[totVgatAt]

// This function takes a SectionRef and a vector with surface area synapse
// scaling and places the number of corresponding Vgat+ inhibitory synapses.
// Note that the low index of the first placed synapse needs to be specified
// in order to give indices to all of the generated synapse.
//
// $o1: SectionRef instance.  Contains the section to implement with the scaling
// 	rule.
// $o2: Vector instance.  Contains the scaling rule to implement.  If the
//	density is uniform across the branch (e.g., 0.1 synapses/um2), then
//	simply supply as 
//		foo = new Vector(1); foo.x[0] = 0.1; $o1 = foo
// 	Conversely, if
// 	there is spatial variation across the branch (say, 0.1 synapses/um2 in the
//	first third, 0.2 synapses/um2 in the second third, and 0.3 synapses/um2
// 	in the final third), then, supply as
//		foo = new Vector(3) ; foo.x[0] = 0.1, foo.x[1] = 0.2;
//			foo.x[2] = 0.3 ; $o1 = foo
// $3: numeric.  The index of the first synapse to be created and placed.
//
// The number of synapses added is returned.
func addVgatInhibition() {local nDiv,runningSa,synAdd,synCur,ii,jj
	
	nDiv = $o2.size() // number of divisions for the compartment

	synCur = $3
	// Place synapses.
	$o1.sec {
		for ii=1,nDiv{
			runningSa = 0
			synAdd=0 
			for(x,0){
				if(((ii-1)/nDiv)<x_eff(x)){
					if(x_eff(x)<(ii/nDiv+0.00000001)){
						runningSa += area(x)
						
						if(int(runningSa*($o2.x[ii-1]))>(synAdd+0.00001)){
							toAdd = int(runningSa*($o2.x[ii-1])-synAdd)
							for jj=1,toAdd{
								synCur = synCur + 1
								synAdd = synAdd + 1
								//print "\t",secname(),"\t",x,"\t",synCur-1
								synVgatAt[synCur-1] = new inhSyn(x)
								synVgatAt[synCur-1].vgat = 1
								synVgatAt[synCur-1].xEff = x_eff(x)
								nsVgatAt[synCur-1] = new NetStim(x)
								ncVgatAt[synCur-1] = new NetCon(nsVgatAt[synCur-1],synVgatAt[synCur-1])
							}
						}else{
							toAdd = 0
						}
						vgatAt_syns(x) = toAdd
					}
				}
			}
		}
	}	

	return synCur-$3	
}

	
	synInd = 0 // first index to be used
	objref curSec // rolling SectionRef to currently accessed section
	
	// Define tuft densities and add tuft synapses.
	objref denVgatTuftTerm,denVgatTuftPar
	denVgatTuftTerm = new Vector(3)
		denVgatTuftTerm.x[0] = 0.09//0.075
		denVgatTuftTerm.x[1] = 0.11//0.085
		denVgatTuftTerm.x[2] = 0.135//0.1275
	denVgatTuftPar = new Vector(3)
		denVgatTuftPar.x[0] = 0.105
		denVgatTuftPar.x[1] = 0.105
		denVgatTuftPar.x[2] = 0.1
	nVgatTuft = 0
	
	forsec tuftList {
		curSec = new SectionRef()
		if(isTerm_id){
			numAdded = addVgatInhibition(curSec,denVgatTuftTerm,synInd)
		}else{
			numAdded = addVgatInhibition(curSec,denVgatTuftPar,synInd)
		}
		synInd+=numAdded
		nVgatTuft+=numAdded
	}
	
	// print "The total number of VGAT+ synapses in tuft is: ",nVgatTuft
	
	// Define oblique densities and add oblique synapses.
	objref denVgatObl
	denVgatObl = new Vector(3)
		denVgatObl.x[0] = 0.04
		denVgatObl.x[1] = 0.04
		denVgatObl.x[2] = 0.04
	nVgatObl = 0
		
	forsec obliqueList {
		curSec = new SectionRef()
		numAdded = addVgatInhibition(curSec,denVgatObl,synInd)
		synInd+=numAdded
		nVgatObl+=numAdded
	}
	
	// print "The total number of VGAT+ synapses in obliques is: ",nVgatObl
	
	// Define apical trunk densities and add synapses.
	// Note this includes a distance-dependent scaling factor.
	objref denVgatPrim,denVgatPrimTemp
	denVgatPrim = new Vector(1)
		denVgatPrim.x[0] = 0.056
	denVgatPrimTemp = new Vector(denVgatPrim.size()) // a rolling density with distant-dependent scaling
	nVgatPrim = 0
		
	soma.sec{distance()}
	
	forsec primList {
		curSec = new SectionRef()
		theDist = distance(0.5)
		
		scaleFact = 1-theDist/225
		if(scaleFact<0){scaleFact=0}
		
		denVgatPrimTemp.copy(denVgatPrim)
		denVgatPrimTemp.mul(scaleFact)
		
		numAdded = addVgatInhibition(curSec,denVgatPrimTemp,synInd)
		synInd+=numAdded
		nVgatPrim+=numAdded
	}
	// print "The total number of VGAT+ synapses in main apical is: ",nVgatPrim
	
	// Add synapses to soma.  
	objref denVgatSoma
	denVgatSoma = new Vector(1)
		denVgatSoma.x[0] = 0 // 0.064 is correct, but don't want somatic inhibition
	nVgatSoma = 0
		
	soma.sec {
		curSec = new SectionRef()
		numAdded = addVgatInhibition(curSec,denVgatSoma,synInd)
		synInd+=numAdded
		nVgatSoma+=numAdded
	}
	// print "The total number of VGAT+ synapses in soma is: ",nVgatSoma
	
	// Add synapses to basals.
	objref denVgatBasalPrim,denVgatBasalSec,denVgatBasalTerm
	denVgatBasalPrim = new Vector(1)
		denVgatBasalPrim.x[0] = 0.09
	denVgatBasalSec = new Vector(1)
		denVgatBasalSec.x[0] = 0.08
	denVgatBasalTerm = new Vector(3)
		denVgatBasalTerm.x[0] = 0.05
		denVgatBasalTerm.x[1] = 0.05
		denVgatBasalTerm.x[2] = 0.03
	nVgatBasal=0
	
	forsec basalList {
		curSec = new SectionRef()
		if(isTerm_id){
			numAdded = addVgatInhibition(curSec,denVgatBasalTerm,synInd)
		}else{
			if(abs(brOrd_id-1)<0.001){
				numAdded = addVgatInhibition(curSec,denVgatBasalPrim,synInd)
			}else{
				if(abs(isTerm_id)){
					numAdded = addVgatInhibition(curSec,denVgatBasalTerm,synInd)
				}else{
					numAdded = addVgatInhibition(curSec,denVgatBasalSec,synInd) // keep as 2ary for time being
				}
			}
		}
		synInd+=numAdded
		nVgatBasal+=numAdded
	}
	// print "The total number of VGAT+ synapses in basals is: ",nVgatBasal
	
	
// Note the number of synapses that were created.
// print "The total number of VGAT+ synapses is: ",synInd
totVgatAt = synInd-1

Loading data, please wait...