Effects of electric fields on cognitive functions (Migliore et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:190559
The paper discusses the effects induced by an electric field at power lines frequency on neuronal activity during cognitive processes.
Reference:
1 . Migliore R, De Simone G, Leinekugel X, Migliore M (2017) The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons. Eur J Neurosci 45:1024-1031 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Extracellular Fields; Gamma oscillations; Pattern Recognition; Spatio-temporal Activity Patterns;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu]; Migliore, Rosanna [rosanna.migliore at cnr.it];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; I Na,t; I A; I K; I h; Glutamate;
/
MiglioreEJN2016
readme.html
distr.mod *
distr2.mod
fzap.mod *
Gfluct.mod
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstimm.mod *
xtrau.mod *
anatscale.hoc *
biophys.hoc
biophysPLAST.hoc
calcd.hoc
calcrxcu.hoc
ef_fig.png
efheader.hoc *
fig1B.hoc
fixnseg.hoc *
freq50.xfm
geo5038804.hoc *
init.hoc
interpxyzu.hoc *
LTDran.hoc
media-st er.xfm
mosinit.hoc
Napical.txt
no_ef_fig.png
Plast.hoc
setnseg.hoc *
setpointersu.hoc *
soma.hoc
synapses.hoc
voltage.ses
zapstimu.hoc
                            
celsius = 35

Rm = 28000
RmDend = Rm
RmSoma = Rm
RmAx = Rm

Cm    = 1
CmSoma = Cm
CmAx = Cm
CmDend = Cm

RaAll = 150
RaSoma =150  
RaAx = 50
Vrest =-65

forsec "axon" {
	insert pas e_pas=Vrest g_pas = 1/RmAx Ra=RaAx cm=CmAx
}

forsec "soma" {
	insert pas e_pas=Vrest g_pas = 1/RmSoma Ra=RaSoma cm=CmSoma
}

forsec "dendrite" {
	insert pas e_pas=Vrest g_pas = 1/RmDend Ra=RaAll cm=CmDend
}

forsec "user5" {
	insert pas e_pas=Vrest g_pas = 1/RmDend Ra=RaAll cm=CmDend
}


load_file("setnseg.hoc")

access soma
distance()

gna = 0.025
AXONM = 5
gkdr = 0.01
KMULT = 0.03
KMULTP =  0.03
ghd = 0.00005

forsec "axon" {   
	insert nax gbar_nax=gna*AXONM
	insert kdr gkdrbar_kdr=gkdr
	insert kap gkabar_kap=KMULTP
}

forsec "soma" {   
	insert hd ghdbar_hd=ghd vhalfl_hd=-73
	insert na3 gbar_na3=gna
	insert kdr gkdrbar_kdr=gkdr
	insert kap gkabar_kap=KMULTP				
}

for i = 0, numbasal - 1 dendrite[i] {
	insert hd ghdbar_hd=ghd vhalfl_hd=-73
	insert na3 gbar_na3=gna
	insert kdr gkdrbar_kdr=gkdr
	insert kap gkabar_kap=0
	insert kad gkabar_kad=0
	for(x) if(x > 0 && x < 1) {
		xdist = distance(x)
		ghdbar_hd(x) = ghd*(1+3*xdist/100)
		if(xdist > 100){
			vhalfl_hd=-81
			gkabar_kad(x) = KMULT*(1+xdist/100)
		} else {
			vhalfl_hd=-73
			gkabar_kap(x) = KMULTP*(1+xdist/100)
		}
	}
}

forsec "apical_dendrite" {
	insert hd ghdbar_hd=ghd
	insert na3 gbar_na3=gna
	insert kdr gkdrbar_kdr=gkdr
	insert kap gkabar_kap=0
	insert kad gkabar_kad=0
	for(x) if(x > 0 && x < 1) {
		xdist = distance(x)
		ghdbar_hd(x) = ghd*(1+3*xdist/100)
		if(xdist > 100) {
			vhalfl_hd=-81
			gkabar_kad(x) = KMULT*(1+xdist/100)
		} else {
			vhalfl_hd=-73
			gkabar_kap(x) = KMULTP*(1+xdist/100)
		}
	}
}

forsec "user5" {
	insert hd ghdbar_hd=ghd
	insert na3 gbar_na3=gna
	insert kdr gkdrbar_kdr=gkdr
	insert kap gkabar_kap=0
	insert kad gkabar_kad=0

	for(x) if(x > 0 && x < 1) {
		xdist = distance(x)
		ghdbar_hd(x) = ghd*(1+3*xdist/100)
		if(xdist > 100) {
			vhalfl_hd=-81
			gkabar_kad(x) = KMULT*(1+xdist/100)
		} else {
			vhalfl_hd=-73
			gkabar_kap(x) = KMULTP*(1+xdist/100)
		}
	}
}


Loading data, please wait...