Synaptic integration in a model of granule cells (Gabbiani et al 1994)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:19591
We have developed a compartmental model of a turtle cerebellar granule cell consisting of 13 compartments that represent the soma and 4 dendrites. We used this model to investigate the synaptic integration of mossy fiber inputs in granule cells. See reference or abstract at PubMed link below for more information.
Reference:
1 . Gabbiani F, Midtgaard J, Knöpfel T (1994) Synaptic integration in a model of cerebellar granule cells. J Neurophysiol 72:999-1009 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s): I Na,t; I L high threshold; I K; I h; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Coincidence Detection; Detailed Neuronal Models; Action Potentials; Calcium dynamics;
Implementer(s): Gabbiani, F;
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I K; I h; I K,Ca;
TITLE Ca leak

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
}

INDEPENDENT { v FROM -100 TO 50 WITH 50	(mV) }

NEURON {
	SUFFIX caleak
	USEION ca WRITE ica
	RANGE gbar, i
        GLOBAL e
}

PARAMETER {
	gbar = 1.616e-6	(mho/cm2)
	e = 80	(mV)
}

ASSIGNED { i    (mA/cm2)
           ica	(mA/cm2)}

BREAKPOINT {
	i = gbar*(v - e)
        ica = i
}

Loading data, please wait...