CA1 pyramidal neuron: integration of subthreshold inputs from PP and SC (Migliore 2003)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:19696
The model shows how the experimentally observed increase in the dendritic density of Ih and IA could have a major role in constraining the temporal integration window for the main CA1 synaptic inputs.
Reference:
1 . Migliore M (2003) On the integration of subthreshold inputs from Perforant Path and Schaffer Collaterals in hippocampal CA1 pyramidal neurons. J Comput Neurosci 14:185-92 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Coincidence Detection; Active Dendrites; Detailed Neuronal Models;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; AMPA; I Na,t; I A; I K; I h; Glutamate;
/
sc-pp
readme.txt
h.mod *
kadist.mod
kaprox.mod *
kdrca1.mod *
na3.mod *
nax.mod *
fig4.hoc
mosinit.hoc
n160_mod.nrn *
                            
TITLE I-h channel from Magee 1998 for distal dendrites

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-90   	(mV)
        vhalft=-75   	(mV)
        a0t=0.011      	(/ms)
        zetal=4    	(1)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar, vhalfl
        GLOBAL linf,taul
}

STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        ghd
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)

}


FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpt(v(mV)) {
  alpt = exp(1.e-3*zetat*(v-vhalft)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION bett(v(mV)) {
  bett = exp(1.e-3*zetat*gmt*(v-vhalft)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}















Loading data, please wait...