Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_16
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4cexss.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hexss.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4vexss.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt *
                            
% Sat Nov 21 22:27:43 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev1v, ev4v)  {
  From:  (1, 1)  {
    ([ 8, 1]  0.043830) 
    |              | 
    ([ 1, 1]  0.030429) 
    |              | 
    ([ 3, 1]  0.049166) 
  }
  From:  (1, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 2]  0.048337) 
    ([ 3, 2]  0.043141) 
  }
  From:  (1, 3)  {
    ([ 8, 3]  0.033160) 
    |              | 
    ([ 1, 3]  0.037497) 
    ([ 2, 3]  0.042881) 
    |              | 
  }
  From:  (1, 4)  {
    ([ 8, 4]  0.033666) 
    |              | 
    ([ 1, 4]  0.047709) 
    |              | 
    |              | 
  }
  From:  (1, 5)  {
    ([ 8, 5]  0.040489) 
    ([ 9, 5]  0.045639) 
    ([ 1, 5]  0.033117) 
    ([ 2, 5]  0.040669) 
    |              | 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 6]  0.038393) 
    ([ 3, 6]  0.032142) 
  }
  From:  (1, 7)  {
    |              | 
    ([ 9, 7]  0.047055) 
    ([ 1, 7]  0.033071) 
    ([ 2, 7]  0.043582) 
    |              | 
  }
  From:  (1, 8)  {
    ([ 8, 8]  0.047591) 
    ([ 9, 8]  0.049892) 
    |              | 
    ([ 2, 8]  0.048375) 
    |              | 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.049580) 
    |              | 
    |              | 
    |              | 
    ([ 3, 9]  0.047297) 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.049475) 
    ([ 2, 1]  0.037821) 
    |              | 
    ([ 4, 1]  0.031396) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.038666) 
    ([ 1, 2]  0.043625) 
    ([ 2, 2]  0.040242) 
    |              | 
    ([ 4, 2]  0.032861) 
  }
  From:  (2, 3)  {
    ([ 9, 3]  0.048430) 
    |              | 
    |              | 
    ([ 3, 3]  0.041736) 
    ([ 4, 3]  0.031342) 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    ([ 2, 4]  0.039208) 
    |              | 
    ([ 4, 4]  0.031456) 
  }
  From:  (2, 5)  {
    |              | 
    ([ 1, 5]  0.044216) 
    |              | 
    ([ 3, 5]  0.040109) 
    ([ 4, 5]  0.044690) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.039928) 
    ([ 1, 6]  0.032694) 
    |              | 
    ([ 3, 6]  0.046411) 
    ([ 4, 6]  0.049351) 
  }
  From:  (2, 7)  {
    ([ 9, 7]  0.043622) 
    |              | 
    ([ 2, 7]  0.032370) 
    ([ 3, 7]  0.032894) 
    |              | 
  }
  From:  (2, 8)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 8]  0.041526) 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    ([ 1, 9]  0.036412) 
    ([ 2, 9]  0.037613) 
    ([ 3, 9]  0.049798) 
    |              | 
  }
  From:  (3, 1)  {
    ([ 1, 1]  0.045942) 
    ([ 2, 1]  0.045599) 
    ([ 3, 1]  0.037412) 
    |              | 
    ([ 5, 1]  0.042307) 
  }
  From:  (3, 2)  {
    |              | 
    ([ 2, 2]  0.031556) 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 3)  {
    |              | 
    ([ 2, 3]  0.049989) 
    ([ 3, 3]  0.049975) 
    |              | 
    |              | 
  }
  From:  (3, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.038783)   }
  From:  (3, 5)  {
    ([ 1, 5]  0.031161) 
    ([ 2, 5]  0.039624) 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.034022) 
    |              | 
    |              | 
    ([ 4, 6]  0.035999) 
    ([ 5, 6]  0.035626) 
  }
  From:  (3, 7)  {
    |              | 
    ([ 2, 7]  0.034556) 
    ([ 3, 7]  0.048239) 
    |              | 
    ([ 5, 7]  0.042782) 
  }
  From:  (3, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 5, 8]  0.040848) 
  }
  From:  (3, 9)  {
    ([ 1, 9]  0.049802) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    ([ 2, 1]  0.038604) 
    |              | 
    ([ 4, 1]  0.046870) 
    ([ 5, 1]  0.043535) 
    |              | 
  }
  From:  (4, 2)  {
    |              | 
    |              | 
    ([ 4, 2]  0.037223) 
    |              | 
    ([ 6, 2]  0.047458) 
  }
  From:  (4, 3)  {
    |              | 
    ([ 3, 3]  0.046282) 
    |              | 
    |              | 
    ([ 6, 3]  0.048787) 
  }
  From:  (4, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 4]  0.045492) 
  }
  From:  (4, 5)  {
    |              | 
    |              | 
    ([ 4, 5]  0.040996) 
    ([ 5, 5]  0.030329) 
    |              | 
  }
  From:  (4, 6)  {
    |              | 
    ([ 3, 6]  0.049039) 
    |              | 
    ([ 5, 6]  0.041513) 
    ([ 6, 6]  0.042708) 
  }
  From:  (4, 7)  {
    |              | 
    ([ 3, 7]  0.033805) 
    ([ 4, 7]  0.037736) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    |              | 
    ([ 3, 8]  0.033103) 
    |              | 
    |              | 
    |              | 
  }
  From:  (4, 9)  {
    |              | 
    |              | 
    ([ 4, 9]  0.048789) 
    ([ 5, 9]  0.031545) 
    |              | 
  }
  From:  (5, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.046832)   }
  From:  (5, 2)  {
    |              | 
    |              | 
    ([ 5, 2]  0.040111) 
    |              | 
    |              | 
  }
  From:  (5, 3)  {
    ([ 3, 3]  0.047079) 
    ([ 4, 3]  0.031957) 
    ([ 5, 3]  0.041495) 
    |              | 
    ([ 7, 3]  0.036702) 
  }
  From:  (5, 4)  {
    ([ 3, 4]  0.043708) 
    ([ 4, 4]  0.045215) 
    |              | 
    |              | 
    ([ 7, 4]  0.045783) 
  }
  From:  (5, 5)  {
    |              | 
    ([ 4, 5]  0.039594) 
    |              | 
    ([ 6, 5]  0.040514) 
    ([ 7, 5]  0.044908) 
  }
  From:  (5, 6)  {
    |              | 
    ([ 4, 6]  0.043671) 
    ([ 5, 6]  0.040689) 
    ([ 6, 6]  0.048691) 
    |              | 
  }
  From:  (5, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 7]  0.049940) 
    |              | 
  }
  From:  (5, 8)  {
    ([ 3, 8]  0.047159) 
    ([ 4, 8]  0.031229) 
    ([ 5, 8]  0.039674) 
    ([ 6, 8]  0.035987) 
    ([ 7, 8]  0.034617) 
  }
  From:  (5, 9)  {
    |              | 
    ([ 4, 9]  0.032325) 
    |              | 
    |              | 
    ([ 7, 9]  0.042307) 
  }
  From:  (6, 1)  {
    ([ 4, 1]  0.045570) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (6, 2)  {
    ([ 4, 2]  0.038059) 
    |              | 
    |              | 
    ([ 7, 2]  0.043653) 
    ([ 8, 2]  0.048904) 
  }
  From:  (6, 3)  {
    |              | 
    |              | 
    ([ 6, 3]  0.044233) 
    |              | 
    ([ 8, 3]  0.032795) 
  }
  From:  (6, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 8, 4]  0.032171) 
  }
  From:  (6, 5)  {
    ([ 4, 5]  0.047782) 
    ([ 5, 5]  0.048243) 
    ([ 6, 5]  0.045367) 
    |              | 
    ([ 8, 5]  0.038467) 
  }
  From:  (6, 6)  {
    |              | 
    ([ 5, 6]  0.036559) 
    |              | 
    ([ 7, 6]  0.037673) 
    ([ 8, 6]  0.032533) 
  }
  From:  (6, 7)  {
    |              | 
    |              | 
    ([ 6, 7]  0.037612) 
    ([ 7, 7]  0.048161) 
    |              | 
  }
  From:  (6, 8)  {
    ([ 4, 8]  0.031904) 
    |              | 
    ([ 6, 8]  0.035530) 
    |              | 
    |              | 
  }
  From:  (6, 9)  {
    |              | 
    |              | 
    ([ 6, 9]  0.040479) 
    ([ 7, 9]  0.031217) 
    |              | 
  }
  From:  (7, 1)  {
    ([ 5, 1]  0.035273) 
    ([ 6, 1]  0.033198) 
    ([ 7, 1]  0.032480) 
    |              | 
    |              | 
  }
  From:  (7, 2)  {
    |              | 
    ([ 6, 2]  0.043941) 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 3)  {
    |              | 
    ([ 6, 3]  0.046796) 
    |              | 
    ([ 8, 3]  0.040331) 
    |              | 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.035498) 
    |              | 
    |              | 
    |              | 
    ([ 9, 4]  0.044757) 
  }
  From:  (7, 5)  {
    ([ 5, 5]  0.039352) 
    ([ 6, 5]  0.048024) 
    |              | 
    ([ 8, 5]  0.035870) 
    |              | 
  }
  From:  (7, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 9, 6]  0.034219) 
  }
  From:  (7, 7)  {
    |              | 
    ([ 6, 7]  0.047390) 
    |              | 
    ([ 8, 7]  0.046848) 
    ([ 9, 7]  0.032373) 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.033127) 
    ([ 6, 8]  0.037392) 
    ([ 7, 8]  0.044208) 
    ([ 8, 8]  0.030680) 
    ([ 9, 8]  0.042918) 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.039419) 
    |              | 
    |              | 
    ([ 8, 9]  0.037177) 
    ([ 9, 9]  0.049169) 
  }
  From:  (8, 1)  {
    ([ 6, 1]  0.045555) 
    |              | 
    |              | 
    ([ 9, 1]  0.049203) 
    ([ 1, 1]  0.031922) 
  }
  From:  (8, 2)  {
    |              | 
    ([ 7, 2]  0.038368) 
    ([ 8, 2]  0.037049) 
    ([ 9, 2]  0.037344) 
    |              | 
  }
  From:  (8, 3)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 3]  0.037538) 
    ([ 1, 3]  0.045416) 
  }
  From:  (8, 4)  {
    ([ 6, 4]  0.035004) 
    |              | 
    |              | 
    ([ 9, 4]  0.037405) 
    |              | 
  }
  From:  (8, 5)  {
    |              | 
    ([ 7, 5]  0.037716) 
    |              | 
    ([ 9, 5]  0.035454) 
    ([ 1, 5]  0.036588) 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.031403)   }
  From:  (8, 7)  {
    |              | 
    |              | 
    ([ 8, 7]  0.036940) 
    |              | 
    |              | 
  }
  From:  (8, 8)  {
    ([ 6, 8]  0.041624) 
    |              | 
    |              | 
    |              | 
    ([ 1, 8]  0.033905) 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.047769) 
    |              | 
    ([ 8, 9]  0.041813) 
    ([ 9, 9]  0.038932) 
    |              | 
  }
  From:  (9, 1)  {
    |              | 
    ([ 8, 1]  0.035186) 
    ([ 9, 1]  0.039853) 
    |              | 
    |              | 
  }
  From:  (9, 2)  {
    ([ 7, 2]  0.042788) 
    ([ 8, 2]  0.037465) 
    ([ 9, 2]  0.043905) 
    ([ 1, 2]  0.042207) 
    |              | 
  }
  From:  (9, 3)  {
    ([ 7, 3]  0.049749) 
    |              | 
    |              | 
    ([ 1, 3]  0.047332) 
    ([ 2, 3]  0.044202) 
  }
  From:  (9, 4)  {
    |              | 
    |              | 
    ([ 9, 4]  0.037078) 
    |              | 
    |              | 
  }
  From:  (9, 5)  {
    |              | 
    ([ 8, 5]  0.042540) 
    |              | 
    ([ 1, 5]  0.043834) 
    ([ 2, 5]  0.034637) 
  }
  From:  (9, 6)  {
    |              | 
    ([ 8, 6]  0.038039) 
    ([ 9, 6]  0.048739) 
    |              | 
    |              | 
  }
  From:  (9, 7)  {
    ([ 7, 7]  0.043863) 
    ([ 8, 7]  0.043889) 
    ([ 9, 7]  0.044004) 
    |              | 
    ([ 2, 7]  0.043536) 
  }
  From:  (9, 8)  {
    ([ 7, 8]  0.046740) 
    ([ 8, 8]  0.046498) 
    ([ 9, 8]  0.042481) 
    ([ 1, 8]  0.034897) 
    |              | 
  }
  From:  (9, 9)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 9]  0.033614) 
    ([ 2, 9]  0.039230) 
  }
}

Loading data, please wait...