Large-scale neural model of visual short-term memory (Ulloa, Horwitz 2016; Horwitz, et al. 2005,...)

 Download zip file 
Help downloading and running models
Accession:206337
Large-scale neural model of visual short term memory embedded into a 998-node connectome. The model simulates electrical activity across neuronal populations of a number of brain regions and converts that activity into fMRI and MEG time-series. The model uses a neural simulator developed at the Brain Imaging and Modeling Section of the National Institutes of Health.
References:
1 . Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310-20 [PubMed]
2 . Ulloa A, Horwitz B (2016) Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex. Front Neuroinform 10:32 [PubMed]
3 . Horwitz B, Warner B, Fitzer J, Tagamets MA, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity. Application to fMRI. Philos Trans R Soc Lond B Biol Sci 360:1093-108 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Working memory;
Implementer(s): Ulloa, Antonio [antonio.ulloa at alum.bu.edu];
/
lsnm_in_python-master
visual_model
subject_6
attsefd2.w
attvatts.w
efd1efd1.w
efd1efd2.w
efd1exfr.w
efd1ifd1.w
efd1infs.w
efd1inss.w
efd2efd1.w
efd2efd2.w
efd2ev4c.w
efd2ev4h.w
efd2ev4v.w
efd2exss.w
efd2ifd2.w
ev1hev1h.w
ev1hev4c.w
ev1hev4h.w
ev1hiv1h.w
ev1vev1v.w
ev1vev4c.w
ev1vev4v.w
ev1viv1v.w
ev4c.wt *
ev4cev4c.w
ev4civ4c.w
ev4h.wt *
ev4hev1h.w
ev4hev4h.w
ev4hiv4h.w
ev4v.wt *
ev4vev1v.w
ev4vev4v.w
ev4viv4v.w
exfrexfr.w
exfrifd1.w
exfrifd2.w
exfrinfr.w
exfsefd2.w
exfsexfr.w
exfsexfs.w
exfsifd1.w
exfsinfs.w
exssev4c.w
exssev4h.w
exssev4v.w
exssexfs.w
exssexss.w
exssinss.w
ifd1efd1.w
ifd2efd2.w
infrexfr.w
infsexfs.w
inssexss.w
iv1hev1h.w
iv1vev1v.w
iv4cev4c.w
iv4hev4h.w
iv4vev4v.w
lgnsev1h.w
lgnsev1v.w
weightslist.txt
                            
% Fri Aug 21 04:52:55 2015

% Input layer: (9, 9)
% Output layer: (9, 9)
% Fanout size: (5, 1)
% Fanout spacing: (1, 1)
% Specified fanout weights

Connect(ev4v, ev1v)  {
  From:  (1, 1)  {
    ([ 8, 1]  0.000725) 
    ([ 9, 1]  0.000770) 
    |              | 
    ([ 2, 1]  0.000009) 
    ([ 3, 1]  0.001253) 
  }
  From:  (1, 2)  {
    ([ 8, 2]  0.001126) 
    |              | 
    |              | 
    ([ 2, 2]  0.001349) 
    ([ 3, 2]  0.000517) 
  }
  From:  (1, 3)  {
    |              | 
    ([ 9, 3]  0.001912) 
    ([ 1, 3]  0.000602) 
    ([ 2, 3]  0.001135) 
    |              | 
  }
  From:  (1, 4)  {
    |              | 
    ([ 9, 4]  0.001970) 
    |              | 
    ([ 2, 4]  0.001231) 
    ([ 3, 4]  0.000236) 
  }
  From:  (1, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 5]  0.000022) 
    |              | 
  }
  From:  (1, 6)  {
    |              | 
    |              | 
    |              | 
    ([ 2, 6]  0.001526) 
    ([ 3, 6]  0.001127) 
  }
  From:  (1, 7)  {
    |              | 
    ([ 9, 7]  0.001429) 
    |              | 
    |              | 
    |              | 
  }
  From:  (1, 8)  {
    |              | 
    ([ 9, 8]  0.001200) 
    ([ 1, 8]  0.001235) 
    |              | 
    |              | 
  }
  From:  (1, 9)  {
    ([ 8, 9]  0.000636) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (2, 1)  {
    |              | 
    ([ 1, 1]  0.000885) 
    |              | 
    ([ 3, 1]  0.000733) 
    ([ 4, 1]  0.000428) 
  }
  From:  (2, 2)  {
    ([ 9, 2]  0.001652) 
    |              | 
    ([ 2, 2]  0.001829) 
    |              | 
    ([ 4, 2]  0.000715) 
  }
  From:  (2, 3)  {
    |              | 
    |              | 
    ([ 2, 3]  0.001085) 
    |              | 
    |              | 
  }
  From:  (2, 4)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000258)   }
  From:  (2, 5)  {
    ([ 9, 5]  0.001086) 
    ([ 1, 5]  0.001803) 
    ([ 2, 5]  0.000382) 
    |              | 
    ([ 4, 5]  0.001444) 
  }
  From:  (2, 6)  {
    ([ 9, 6]  0.000928) 
    |              | 
    |              | 
    ([ 3, 6]  0.001328) 
    |              | 
  }
  From:  (2, 7)  {
    |              | 
    |              | 
    |              | 
    ([ 3, 7]  0.000920) 
    |              | 
  }
  From:  (2, 8)  {
    ([ 9, 8]  0.000799) 
    |              | 
    |              | 
    ([ 3, 8]  0.000815) 
    |              | 
  }
  From:  (2, 9)  {
    |              | 
    ([ 1, 9]  0.001999) 
    |              | 
    ([ 3, 9]  0.001627) 
    ([ 4, 9]  0.001482) 
  }
  From:  (3, 1)  {
    |              | 
    |              | 
    ([ 3, 1]  0.000137) 
    ([ 4, 1]  0.001106) 
    ([ 5, 1]  0.001690) 
  }
  From:  (3, 2)  {
    |              | 
    ([ 2, 2]  0.000162) 
    ([ 3, 2]  0.000103) 
    ([ 4, 2]  0.000853) 
    |              | 
  }
  From:  (3, 3)  {
    |              | 
    |              | 
    ([ 3, 3]  0.001479) 
    ([ 4, 3]  0.000991) 
    ([ 5, 3]  0.001921) 
  }
  From:  (3, 4)  {
    ([ 1, 4]  0.001492) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (3, 5)  {
    |              | 
    |              | 
    ([ 3, 5]  0.000917) 
    ([ 4, 5]  0.000934) 
    |              | 
  }
  From:  (3, 6)  {
    ([ 1, 6]  0.000164) 
    |              | 
    ([ 3, 6]  0.000671) 
    ([ 4, 6]  0.001391) 
    |              | 
  }
  From:  (3, 7)  {
    |              | 
    ([ 2, 7]  0.000058) 
    ([ 3, 7]  0.000589) 
    |              | 
    |              | 
  }
  From:  (3, 8)  {
    |              | 
    ([ 2, 8]  0.001406) 
    ([ 3, 8]  0.000288) 
    ([ 4, 8]  0.000084) 
    |              | 
  }
  From:  (3, 9)  {
    |              | 
    ([ 2, 9]  0.001088) 
    ([ 3, 9]  0.000924) 
    |              | 
    |              | 
  }
  From:  (4, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 6, 1]  0.000362) 
  }
  From:  (4, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 5, 2]  0.000655) 
    ([ 6, 2]  0.000886) 
  }
  From:  (4, 3)  {
    |              | 
    ([ 3, 3]  0.001196) 
    |              | 
    ([ 5, 3]  0.001354) 
    |              | 
  }
  From:  (4, 4)  {
    ([ 2, 4]  0.001903) 
    ([ 3, 4]  0.000387) 
    |              | 
    |              | 
    ([ 6, 4]  0.001957) 
  }
  From:  (4, 5)  {
    ([ 2, 5]  0.001257) 
    ([ 3, 5]  0.000981) 
    |              | 
    ([ 5, 5]  0.000668) 
    ([ 6, 5]  0.000508) 
  }
  From:  (4, 6)  {
    ([ 2, 6]  0.000414) 
    |              | 
    ([ 4, 6]  0.000532) 
    ([ 5, 6]  0.000421) 
    |              | 
  }
  From:  (4, 7)  {
    ([ 2, 7]  0.000039) 
    |              | 
    ([ 4, 7]  0.001555) 
    |              | 
    |              | 
  }
  From:  (4, 8)  {
    ([ 2, 8]  0.000815) 
    ([ 3, 8]  0.000717) 
    |              | 
    ([ 5, 8]  0.000756) 
    ([ 6, 8]  0.000940) 
  }
  From:  (4, 9)  {
    ([ 2, 9]  0.000016) 
    |              | 
    ([ 4, 9]  0.000304) 
    ([ 5, 9]  0.000398) 
    |              | 
  }
  From:  (5, 1)  {
    ([ 3, 1]  0.000068) 
    |              | 
    |              | 
    ([ 6, 1]  0.001843) 
    ([ 7, 1]  0.001276) 
  }
  From:  (5, 2)  {
    ([ 3, 2]  0.000909) 
    ([ 4, 2]  0.001268) 
    |              | 
    ([ 6, 2]  0.000544) 
    ([ 7, 2]  0.001442) 
  }
  From:  (5, 3)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 3]  0.001898) 
    ([ 7, 3]  0.001525) 
  }
  From:  (5, 4)  {
    ([ 3, 4]  0.000925) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (5, 5)  {
    |              | 
    |              | 
    |              | 
    ([ 6, 5]  0.000554) 
    ([ 7, 5]  0.000553) 
  }
  From:  (5, 6)  {
    ([ 3, 6]  0.001117) 
    ([ 4, 6]  0.000394) 
    |              | 
    ([ 6, 6]  0.000194) 
    |              | 
  }
  From:  (5, 7)  {
    ([ 3, 7]  0.001269) 
    |              | 
    ([ 5, 7]  0.001680) 
    |              | 
    |              | 
  }
  From:  (5, 8)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000972)   }
  From:  (5, 9)  {
    |              | 
    |              | 
    ([ 5, 9]  0.000009) 
    ([ 6, 9]  0.001946) 
    |              | 
  }
  From:  (6, 1)  {
    |              | 
    |              | 
    |              | 
    ([ 7, 1]  0.001238) 
    |              | 
  }
  From:  (6, 2)  {
    ([ 4, 2]  0.000042) 
    ([ 5, 2]  0.001026) 
    |              | 
    ([ 7, 2]  0.001670) 
    |              | 
  }
  From:  (6, 3)  {
    ([ 4, 3]  0.001764) 
    ([ 5, 3]  0.001788) 
    |              | 
    ([ 7, 3]  0.000302) 
    |              | 
  }
  From:  (6, 4)  {
    ([ 4, 4]  0.000841) 
    |              | 
    ([ 6, 4]  0.001257) 
    ([ 7, 4]  0.000916) 
    ([ 8, 4]  0.000776) 
  }
  From:  (6, 5)  {
    ([ 4, 5]  0.001270) 
    |              | 
    |              | 
    ([ 7, 5]  0.001773) 
    ([ 8, 5]  0.000261) 
  }
  From:  (6, 6)  {
    ([ 4, 6]  0.000460) 
    |              | 
    ([ 6, 6]  0.001195) 
    |              | 
    ([ 8, 6]  0.001777) 
  }
  From:  (6, 7)  {
    ([ 4, 7]  0.000419) 
    |              | 
    |              | 
    ([ 7, 7]  0.000809) 
    |              | 
  }
  From:  (6, 8)  {
    |              | 
    ([ 5, 8]  0.000874) 
    |              | 
    |              | 
    |              | 
  }
  From:  (6, 9)  {
    ([ 4, 9]  0.001023) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 1)  {
    ([ 5, 1]  0.001424) 
    ([ 6, 1]  0.000604) 
    ([ 7, 1]  0.001171) 
    ([ 8, 1]  0.000067) 
    ([ 9, 1]  0.000149) 
  }
  From:  (7, 2)  {
    ([ 5, 2]  0.001427) 
    |              | 
    |              | 
    ([ 8, 2]  0.001508) 
    ([ 9, 2]  0.000279) 
  }
  From:  (7, 3)  {
    ([ 5, 3]  0.000055) 
    |              | 
    ([ 7, 3]  0.000424) 
    ([ 8, 3]  0.001731) 
    |              | 
  }
  From:  (7, 4)  {
    ([ 5, 4]  0.000801) 
    |              | 
    |              | 
    |              | 
    |              | 
  }
  From:  (7, 5)  {
    |              | 
    ([ 6, 5]  0.000645) 
    ([ 7, 5]  0.001182) 
    |              | 
    ([ 9, 5]  0.001784) 
  }
  From:  (7, 6)  {
    |              | 
    |              | 
    ([ 7, 6]  0.001150) 
    |              | 
    |              | 
  }
  From:  (7, 7)  {
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 9, 7]  0.001533) 
  }
  From:  (7, 8)  {
    ([ 5, 8]  0.001058) 
    |              | 
    ([ 7, 8]  0.000347) 
    ([ 8, 8]  0.000985) 
    |              | 
  }
  From:  (7, 9)  {
    ([ 5, 9]  0.001910) 
    ([ 6, 9]  0.000074) 
    ([ 7, 9]  0.001437) 
    |              | 
    ([ 9, 9]  0.000015) 
  }
  From:  (8, 1)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000668)   }
  From:  (8, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 9, 2]  0.001394) 
    ([ 1, 2]  0.000004) 
  }
  From:  (8, 3)  {
    ([ 6, 3]  0.000477) 
    ([ 7, 3]  0.000073) 
    |              | 
    |              | 
    |              | 
  }
  From:  (8, 4)  {
    |              | 
    |              | 
    ([ 8, 4]  0.000096) 
    |              | 
    |              | 
  }
  From:  (8, 5)  {
    |              | 
    |              | 
    ([ 8, 5]  0.000507) 
    ([ 9, 5]  0.001536) 
    ([ 1, 5]  0.001490) 
  }
  From:  (8, 6)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000314)   }
  From:  (8, 7)  {
    |              | 
    ([ 7, 7]  0.001264) 
    ([ 8, 7]  0.000545) 
    ([ 9, 7]  0.001591) 
    ([ 1, 7]  0.001760) 
  }
  From:  (8, 8)  {
    |              | 
    ([ 7, 8]  0.001637) 
    ([ 8, 8]  0.001749) 
    |              | 
    ([ 1, 8]  0.001377) 
  }
  From:  (8, 9)  {
    ([ 6, 9]  0.000471) 
    |              | 
    ([ 8, 9]  0.001313) 
    ([ 9, 9]  0.001478) 
    |              | 
  }
  From:  (9, 1)  {
    |              | 
    ([ 8, 1]  0.000965) 
    ([ 9, 1]  0.001043) 
    ([ 1, 1]  0.001186) 
    ([ 2, 1]  0.001255) 
  }
  From:  (9, 2)  {
    |              | 
    |              | 
    |              | 
    ([ 1, 2]  0.000721) 
    ([ 2, 2]  0.001415) 
  }
  From:  (9, 3)  {
    |              | 
    |              | 
    |              | 
    |              | 
    |              | 
    ([ 1, 1]  0.000824)   }
  From:  (9, 4)  {
    |              | 
    ([ 8, 4]  0.000705) 
    ([ 9, 4]  0.001610) 
    ([ 1, 4]  0.001408) 
    ([ 2, 4]  0.001820) 
  }
  From:  (9, 5)  {
    ([ 7, 5]  0.000681) 
    ([ 8, 5]  0.000805) 
    |              | 
    |              | 
    |              | 
  }
  From:  (9, 6)  {
    ([ 7, 6]  0.000837) 
    |              | 
    ([ 9, 6]  0.001844) 
    ([ 1, 6]  0.000208) 
    |              | 
  }
  From:  (9, 7)  {
    |              | 
    |              | 
    ([ 9, 7]  0.000181) 
    ([ 1, 7]  0.001835) 
    |              | 
  }
  From:  (9, 8)  {
    |              | 
    |              | 
    ([ 9, 8]  0.001702) 
    ([ 1, 8]  0.000827) 
    ([ 2, 8]  0.001062) 
  }
  From:  (9, 9)  {
    |              | 
    ([ 8, 9]  0.001931) 
    |              | 
    |              | 
    |              | 
  }
}

Loading data, please wait...