Infraslow intrinsic rhythmogenesis in a subset of AOB projection neurons (Gorin et al 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:217783
We investigated patterns of spontaneous neuronal activity in mouse accessory olfactory bulb mitral cells, the direct neural link between vomeronasal sensory input and limbic output. Both in vitro and in vivo, we identify a subpopulation of mitral cells that exhibit slow stereotypical rhythmic discharge. In intrinsically rhythmogenic neurons, these periodic activity patterns are maintained in absence of fast synaptic drive. The physiological mechanism underlying mitral cell autorhythmicity involves cyclic activation of three interdependent ionic conductances: subthreshold persistent Na(+) current, R-type Ca(2+) current, and Ca(2+)-activated big conductance K(+) current. Together, the interplay of these distinct conductances triggers infraslow intrinsic oscillations with remarkable periodicity, a default output state likely to affect sensory processing in limbic circuits. The model reproduces the intrinsic firing in a reconstructed single AOB mitral cell with ion channels kinetics fitted to experimental measurements of their steady state and time course.
Reference:
1 . Gorin M, Tsitoura C, Kahan A, Watznauer K, Drose DR, Arts M, Mathar R, O'Connor S, Hanganu-Opatz IL, Ben-Shaul Y, Spehr M (2016) Interdependent Conductances Drive Infraslow Intrinsic Rhythmogenesis in a Subset of Accessory Olfactory Bulb Projection Neurons. J Neurosci 36:3127-44 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb (accessory) mitral cell;
Channel(s): I Potassium; I Na,p; I Calcium; I Na,t; I K,Ca; I A; I K; I R;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Sensory processing; Oscillations; Olfaction;
Implementer(s): O'Connor, Simon [simon.oconnor at btinternet.com];
Search NeuronDB for information about:  I Na,p; I Na,t; I A; I K; I K,Ca; I Calcium; I Potassium; I R;
COMMENT

   **************************************************
   File generated by: neuroConstruct v1.7.1 
   **************************************************

   This file holds the implementation in NEURON of the Cell Mechanism:
   NaP_iAMC_Fig10Hii_ChannelML (Type: Channel mechanism, Model: ChannelML based process)

   with parameters: 
   /channelml/@units = Physiological Units 
   /channelml/notes = Mitral Cell Persistent Sodium ion Channel 
   /channelml/channel_type/@name = NaP_iAMC_Fig10Hii_ChannelML 
   /channelml/channel_type/@density = yes 
   /channelml/channel_type/status/@value = stable 
   /channelml/channel_type/status/comment = Sodium Persistent conductance modified from Rubin an Cleland 2006 using AOB mitral cell data from the Marc Spehr RWTH Aachen 
   /channelml/channel_type/status/contributor/name = Simon O'Connor 
   /channelml/channel_type/notes = Na Channel 
   /channelml/channel_type/authorList/modelTranslator/name = Simon O'Connor 
   /channelml/channel_type/authorList/modelTranslator/institution = UH 
   /channelml/channel_type/authorList/modelTranslator/email = simon.oconnor - at - btinternet.com 
   /channelml/channel_type/current_voltage_relation/@cond_law = ohmic 
   /channelml/channel_type/current_voltage_relation/@ion = na 
   /channelml/channel_type/current_voltage_relation/@default_gmax = 0.06 
   /channelml/channel_type/current_voltage_relation/@default_erev = 67 
   /channelml/channel_type/current_voltage_relation/@charge = 1 
   /channelml/channel_type/current_voltage_relation/gate[1]/@name = m 
   /channelml/channel_type/current_voltage_relation/gate[1]/@instances = 3 
   /channelml/channel_type/current_voltage_relation/gate[1]/closed_state/@id = m0 
   /channelml/channel_type/current_voltage_relation/gate[1]/open_state/@id = m 
   /channelml/channel_type/current_voltage_relation/gate[1]/open_state/@fraction = 1 
   /channelml/channel_type/current_voltage_relation/gate[1]/time_course/@name = tau 
   /channelml/channel_type/current_voltage_relation/gate[1]/time_course/@from = m0 
   /channelml/channel_type/current_voltage_relation/gate[1]/time_course/@to = m 
   /channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr_form = generic 
   /channelml/channel_type/current_voltage_relation/gate[1]/time_course/@expr = (1+(4 * (exp(0 - ((v + 50)/20)^2)))) 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@name = inf 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@from = m0 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@to = m 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@expr_form = sigmoid 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@rate = 0.499622025796 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@scale = -4.9 
   /channelml/channel_type/current_voltage_relation/gate[1]/steady_state/@midpoint = -59.0 
   /channelml/channel_type/current_voltage_relation/gate[2]/@name = h 
   /channelml/channel_type/current_voltage_relation/gate[2]/@instances = 1 
   /channelml/channel_type/current_voltage_relation/gate[2]/closed_state/@id = h0 
   /channelml/channel_type/current_voltage_relation/gate[2]/open_state/@id = h 
   /channelml/channel_type/current_voltage_relation/gate[2]/open_state/@fraction = 1 
   /channelml/channel_type/current_voltage_relation/gate[2]/time_course/@name = tau 
   /channelml/channel_type/current_voltage_relation/gate[2]/time_course/@from = h0 
   /channelml/channel_type/current_voltage_relation/gate[2]/time_course/@to = h 
   /channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr_form = generic 
   /channelml/channel_type/current_voltage_relation/gate[2]/time_course/@expr = (5000+(16000 * (exp(0 - ((v + 50)/20)^2)))) 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@name = inf 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@from = h0 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@to = h 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@expr_form = sigmoid 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@rate = 0.499622025796 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@scale = 4.9 
   /channelml/channel_type/current_voltage_relation/gate[2]/steady_state/@midpoint = -59.0 
   /channelml/channel_type/current_voltage_relation/gate[3]/@name = n 
   /channelml/channel_type/current_voltage_relation/gate[3]/@instances = 1 
   /channelml/channel_type/current_voltage_relation/gate[3]/closed_state/@id = n0 
   /channelml/channel_type/current_voltage_relation/gate[3]/open_state/@id = n 
   /channelml/channel_type/current_voltage_relation/gate[3]/open_state/@fraction = 1 
   /channelml/channel_type/current_voltage_relation/gate[3]/time_course/@name = tau 
   /channelml/channel_type/current_voltage_relation/gate[3]/time_course/@from = n0 
   /channelml/channel_type/current_voltage_relation/gate[3]/time_course/@to = n 
   /channelml/channel_type/current_voltage_relation/gate[3]/time_course/@expr_form = generic 
   /channelml/channel_type/current_voltage_relation/gate[3]/time_course/@expr = (2+(4 * (exp(0 - ((v + 50)/20)^2)))) 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@name = inf 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@from = n0 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@to = n 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@expr_form = sigmoid 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@rate = 0.499622025796 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@scale = 4.9 
   /channelml/channel_type/current_voltage_relation/gate[3]/steady_state/@midpoint = -59.0 
   /channelml/channel_type/impl_prefs/table_settings/@max_v = 100 
   /channelml/channel_type/impl_prefs/table_settings/@min_v = -100 
   /channelml/channel_type/impl_prefs/table_settings/@table_divisions = 2000 

// File from which this was generated: /home/Simon/NML2_Test/iAMC_Fig10H2T/AOB_MC_neuroConstruct/cellMechanisms/NaP_iAMC_Fig10Hii_ChannelML/NaChannel.xml

// XSL file with mapping to simulator: /home/Simon/NML2_Test/iAMC_Fig10H2T/AOB_MC_neuroConstruct/cellMechanisms/NaP_iAMC_Fig10Hii_ChannelML/ChannelML_v1.8.1_NEURONmod.xsl

ENDCOMMENT


?  This is a NEURON mod file generated from a ChannelML file

?  Unit system of original ChannelML file: Physiological Units

COMMENT
    Mitral Cell Persistent Sodium ion Channel
ENDCOMMENT

TITLE Channel: NaP_iAMC_Fig10Hii_ChannelML

COMMENT
    Na Channel
ENDCOMMENT


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
    (S) = (siemens)
    (um) = (micrometer)
    (molar) = (1/liter)
    (mM) = (millimolar)
    (l) = (liter)
}


    
NEURON {
      

    SUFFIX NaP_iAMC_Fig10Hii_ChannelML
    USEION na READ ena WRITE ina VALENCE 1 ? reversal potential of ion is read, outgoing current is written
           
        
    RANGE gmax, gion
    
    RANGE minf, mtau
    
    RANGE hinf, htau
    
    RANGE ninf, ntau
    
}

PARAMETER { 
      

    gmax = 0.000059999999999999995 (S/cm2)  ? default value, should be overwritten when conductance placed on cell
    
}



ASSIGNED {
      

    v (mV)
    
    celsius (degC)
          

    ? Reversal potential of na
    ena (mV)
    ? The outward flow of ion: na calculated by rate equations...
    ina (mA/cm2)
    
    
    gion (S/cm2)
    minf
    mtau (ms)
    hinf
    htau (ms)
    ninf
    ntau (ms)
    
}

BREAKPOINT { 
                        
    SOLVE states METHOD cnexp
        
    gion = gmax * ((1*m)
^3) * ((1*h)
^1) * ((1*n)
^1)      

    ina = gion*(v - ena)
            

}



INITIAL {
    
    ena = 67
        
    rates(v)
    m = minf
        h = hinf
        n = ninf
        
    
}
    
STATE {
    m
    h
    n
    
}



DERIVATIVE states {
    rates(v)
    m' = (minf - m)/mtau
            h' = (hinf - h)/htau
            n' = (ninf - n)/ntau
            

}

PROCEDURE rates(v(mV)) {  
    
    ? Note: not all of these may be used, depending on the form of rate equations
    LOCAL  alpha, beta, tau, inf, gamma, zeta
, temp_adj_m,
         A_inf_m, B_inf_m, Vhalf_inf_m
, temp_adj_h,
         A_inf_h, B_inf_h, Vhalf_inf_h
, temp_adj_n,
         A_inf_n, B_inf_n, Vhalf_inf_n
    
    TABLE minf, mtau,hinf, htau,ninf, ntau
 DEPEND celsius FROM -100 TO 100 WITH 2000
    
    UNITSOFF
    temp_adj_m = 1
    temp_adj_h = 1
    temp_adj_n = 1
    
            
                
           

        
    ?      ***  Adding rate equations for gate: m  ***
         
    ? Found a generic form of the rate equation for tau, using expression: (1+(4 * (exp(0 - ((v + 50)/20)^2))))
    tau = (1+(4 * (exp(0 - ((v + 50)/20)^2))))
        
    mtau = tau/temp_adj_m
    
    ? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
    A_inf_m = 0.499622025796
    B_inf_m = -4.9
    Vhalf_inf_m = -59.0 
    inf = A_inf_m / (exp((v - Vhalf_inf_m) / B_inf_m) + 1)
    
    minf = inf
    


    ?     *** Finished rate equations for gate: m ***
    

    
            
                
           

        
    ?      ***  Adding rate equations for gate: h  ***
         
    ? Found a generic form of the rate equation for tau, using expression: (5000+(16000 * (exp(0 - ((v + 50)/20)^2))))
    tau = (5000+(16000 * (exp(0 - ((v + 50)/20)^2))))
        
    htau = tau/temp_adj_h
    
    ? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
    A_inf_h = 0.499622025796
    B_inf_h = 4.9
    Vhalf_inf_h = -59.0 
    inf = A_inf_h / (exp((v - Vhalf_inf_h) / B_inf_h) + 1)
    
    hinf = inf
    


    ?     *** Finished rate equations for gate: h ***
    

    
            
                
           

        
    ?      ***  Adding rate equations for gate: n  ***
         
    ? Found a generic form of the rate equation for tau, using expression: (2+(4 * (exp(0 - ((v + 50)/20)^2))))
    tau = (2+(4 * (exp(0 - ((v + 50)/20)^2))))
        
    ntau = tau/temp_adj_n
    
    ? Found a parameterised form of rate equation for inf, using expression: A / (1 + exp((v-Vhalf)/B))
    A_inf_n = 0.499622025796
    B_inf_n = 4.9
    Vhalf_inf_n = -59.0 
    inf = A_inf_n / (exp((v - Vhalf_inf_n) / B_inf_n) + 1)
    
    ninf = inf
    


    ?     *** Finished rate equations for gate: n ***
    

         

}


UNITSON



Loading data, please wait...