Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:223031
In this paper we develop morphologically detailed multi-compartment models of Hippocampal CA1 interneuron specific 3 interneurons using cell current-clamp recordings and dendritic calcium imaging data. In doing so, we developed several variant models, as outlined in the associated README.html file.
Reference:
1 . Guet-McCreight A, Camiré O, Topolnik L, Skinner FK (2016) Using a Semi-Automated Strategy to Develop Multi-Compartment Models That Predict Biophysical Properties of Interneuron-Specific 3 (IS3) Cells in Hippocampus. eNeuro [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I Na,p; I A;
Gap Junctions:
Receptor(s):
Gene(s): Kv3.1 KCNC1; Kv2.1 KCNB1;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Active Dendrites; Activity Patterns; Depolarization block; Detailed Neuronal Models; Ion Channel Kinetics;
Implementer(s): Guet-McCreight, Alexandre [alexandre.guet.mccreight at mail.utoronto.ca];
Search NeuronDB for information about:  I Na,p; I Na,t; I A;
/
Guet-McCreightEtAl2016
S1
IKa.mod *
Ikdrf.mod *
Ikdrs.mod *
ingauss.mod *
Nap.mod *
Nasoma.mod *
init.hoc
IS3_S1_TopModel.hoc
                            
TITLE KDRF
: Fast K-DR current for hippocampal interneurons from Lien et al (2002)
: M.Migliore Jan. 2003

NEURON {
	SUFFIX Ikdrf
	USEION k READ ek WRITE ik
	RANGE  gbar, ik
	GLOBAL minf, mtau, hinf
}

PARAMETER {
	gbar = 0.0002   	(mho/cm2)	
								
	celsius		(degC)
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0m=0.036
	vhalfm=-33	(mV)
	zetam=0.1
	gmm=0.7
	htau=1000	(ms)
	q10=3
	f=0.92
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
	hinf	 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m*h*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(v(mV)) {  
	LOCAL qt
        qt=q10^((celsius-23(degC))/10(degC))
        minf = (1/(1 + exp(-(v+36.2(mV))/16.1(mV))))^4
	mtau = betm(v)/(qt*a0m*1(/ms)*(1+alpm(v)))

        hinf = f*(1/(1 + exp((v+40.6(mV))/7.8(mV))))+(1-f)
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)*1(/mV)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)*1(/mV)) 
}

Loading data, please wait...