Zebrafish Mauthner-cell model (Watanabe et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:232813
The NEURON model files encode the channel generator and firing simulator for simulating development and differentiation of the Mauthner cell (M-cell) excitability in zebrafish. The channel generator enables us to generate arbitrary Na+ and K+ channels by changing parameters of a Hodgkin-Huxley model under emulation of two-electrode voltage-clamp recordings in Xenopus oocyte system. The firing simulator simulates current-clamp recordings to generate firing patterns of the model M-cell, which are implemented with arbitrary-generated basic Na+ and K+ conductances and low-threshold K+ channels Kv7.4/KCNQ4 and sole Kv1.1 or Kv1.1 coexpressed with Kvbeta2.
Reference:
1 . Watanabe T, Shimazaki T, Oda Y (2017) Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain. eNeuro [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism: Brainstem;
Cell Type(s): Mauthner cell;
Channel(s): I Potassium; I A; I_KLT; I_KHT; I M; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s): Kv1.1 KCNA1; Kv7.4 KCNQ4; Kvb2 KCNAB2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Spike Frequency Adaptation; Bursting; Ion Channel Kinetics;
Implementer(s): Watanabe, Takaki [wtakaki at m.u-tokyo.ac.jp];
Search NeuronDB for information about:  I A; I M; I Sodium; I Potassium; I_KHT; I_KLT;
: kcna.mod codes low-threshold K+ channel Kv1.1 encoded in zebrafish kcna1a.
: Default parameters of a H-H equation are fitted to our experimental data
: by using our channel generator. 
:
: Takaki Watanabe
: wtakaki@m.u-tokyo.ac.jp

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (nA) = (nanoamp)
}

NEURON {
        SUFFIX kcna
        USEION k READ ek WRITE ik
        RANGE gkcnabar, gkcna, ik
        GLOBAL winf2, zinf2, wtau2, ztau2
		GLOBAL aa2,bb2,cc2,dd2,ee2,ff2,gg2,hh2,ii2,jj2,kk2,ll2,mm2,nn2,oo2,pp2,qq2,rr2,ss2
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
        v (mV)
        celsius = 20 (degC)  
        dt (ms)
        ek = -90 (mV)
        gkcnabar = 0.01592 (mho/cm2) <0,1e9>
		aa2= 35 <0,1e3>
		bb2= 7 <0,1e3>
		cc2= 0.25 <0,1e3>
		dd2= 71 <0,1e3>
		ee2= 150 <0,1e3>
		ff2= 120 <0,1e3>
		gg2= 6 <0,1e3>
		hh2= 80 <0,1e3>
		ii2= 24 <0,1e3>
		jj2= 70 <0,1e3>
		kk2= 59 <0,1e3>
		ll2= 7 <0,1e3>
		mm2= 1.3 <0,1e3>
		nn2= 1000 <0,1e4>
		oo2= 60 <0,1e3>
		pp2= 20 <0,1e3>
		qq2= 60 <0,1e3>
		rr2= 8 <0,1e3>
		ss2= 50 <0,1e3>
        zss2 = 0.9   <0,1e3>   : steady state inactivation of glt
}

STATE {
        w2 z2
}

ASSIGNED {
    ik (mA/cm2) 
    gkcna (mho/cm2)
    winf2 zinf2
    wtau2 (ms) ztau2 (ms)
    }

LOCAL wexp2, zexp2

BREAKPOINT {
	SOLVE states
    
	gkcna = gkcnabar*(w2^4)*z2
    ik = gkcna*(v - ek)

}

UNITSOFF

INITIAL {
    trates(v)
    w2 = winf2
    z2 = zinf2
}

PROCEDURE states() {  :Computes state variables m, h, and n
	trates(v)      :             at the current v and dt.
	w2 = w2 + wexp2*(winf2-w2)
	z2 = z2 + zexp2*(zinf2-z2)
VERBATIM
	return 0;
ENDVERBATIM
}

LOCAL q10

PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
  
    winf2 = (1 / (1 + exp(-(v + aa2) / bb2)))^cc2
    zinf2 = zss2 + ((1-zss2) / (1 + exp((v + dd2) / ee2)))

    wtau2 =  (ff2 / (gg2*exp((v+hh2) / ii2) + jj2*exp(-(v+kk2) / ll2))) + mm2
    ztau2 =  (nn2 / (exp((v+oo2) / pp2) + exp(-(v+qq2) / rr2))) + ss2
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL tinc
	TABLE winf2, wexp2, zinf2, zexp2
	DEPEND dt, celsius FROM -150 TO 150 WITH 300
	
    q10 = 3^((celsius - 20)/10) 
    rates(v)    
	tinc = -dt * q10
	wexp2 = 1 - exp(tinc/wtau2)
	zexp2 = 1 - exp(tinc/ztau2)
	}


UNITSON

Loading data, please wait...