Zebrafish Mauthner-cell model (Watanabe et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:232813
The NEURON model files encode the channel generator and firing simulator for simulating development and differentiation of the Mauthner cell (M-cell) excitability in zebrafish. The channel generator enables us to generate arbitrary Na+ and K+ channels by changing parameters of a Hodgkin-Huxley model under emulation of two-electrode voltage-clamp recordings in Xenopus oocyte system. The firing simulator simulates current-clamp recordings to generate firing patterns of the model M-cell, which are implemented with arbitrary-generated basic Na+ and K+ conductances and low-threshold K+ channels Kv7.4/KCNQ4 and sole Kv1.1 or Kv1.1 coexpressed with Kvbeta2.
Reference:
1 . Watanabe T, Shimazaki T, Oda Y (2017) Coordinated Expression of Two Types of Low-Threshold K+ Channels Establishes Unique Single Spiking of Mauthner Cells among Segmentally Homologous Neurons in the Zebrafish Hindbrain. eNeuro [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism: Brainstem;
Cell Type(s): Mauthner cell;
Channel(s): I Potassium; I A; I_KLT; I_KHT; I M; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s): Kv1.1 KCNA1; Kv7.4 KCNQ4; Kvb2 KCNAB2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Spike Frequency Adaptation; Bursting; Ion Channel Kinetics;
Implementer(s): Watanabe, Takaki [wtakaki at m.u-tokyo.ac.jp];
Search NeuronDB for information about:  I A; I M; I Sodium; I Potassium; I_KHT; I_KLT;
: na.mod codes a voltage-gated Na+ channel.
: Default parameters of a H-H equation are fitted to our experimental data
: by using our channel generator. 
:
: Takaki Watanabe
: wtakaki@m.u-tokyo.ac.jp

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (nA) = (nanoamp)
}

NEURON {
        SUFFIX na
        USEION na READ ena WRITE ina
        RANGE gnabar, gna, ina
        GLOBAL hinf, minf, htau, mtau
		GLOBAL aa4,bb4,cc4,dd4,ee4,ff4,gg4,hh4,ii4,jj4,kk4,ll4,mm4,nn4,oo4,pp4,qq4,rr4,ss4,tt4
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
        v (mV)
        celsius = 20 (degC)  
        dt (ms)
        ena (mV)
        gnabar =  0.07958 (mho/cm2) <0,1e9>
		aa4= 39 <0,1e3>  
		bb4= 8 <0,1e3>
		cc4= 63 <0,1e3>  
		dd4= 7 <0,1e3>
		ee4= 70 <0,1e3>
		ff4= 5 <0,1e3>   
		gg4= 110 <0,1e3>
		hh4= 16 <0,1e3>
		ii4= 200 <0,1e3>
		jj4= 50 <0,1e3>
		kk4= 10 <0,1e3>
		ll4= 0.01 <0,1e3>
		mm4= 110 <0,1e3>
		nn4= 3 <0,1e3>
		oo4= 110 <0,1e3>
		pp4= 20 <0,1e3>
		qq4= 10 <0,1e3>
		rr4= 80 <0,1e3>
		ss4= 13 <0,1e3>
        tt4 = 0.1   <0,1e3>  
}

STATE {
        m h
}

ASSIGNED {
    ina (mA/cm2)
    gna (mho/cm2)
    minf hinf
    mtau (ms) htau (ms)
    }

LOCAL mexp, hexp

BREAKPOINT {
	SOLVE states
    gna = gnabar*(m^3)*h
    ina = gna*(v - ena)
}

UNITSOFF

INITIAL {
    trates(v)
    m = minf
    h = hinf
}

PROCEDURE states() {  :Computes state variables m, h, and n
	trates(v)      :             at the current v and dt.
	m = m + mexp*(minf-m)
	h = h + hexp*(hinf-h)
VERBATIM
	return 0;
ENDVERBATIM
}

LOCAL q10

PROCEDURE rates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.

    minf = 1 / (1+exp(-(v + aa4) / bb4))
    hinf = 1 / (1+exp((v + cc4) / dd4))

    mtau =  (ee4 / (ff4*exp((v+gg4) / hh4) + ii4*exp(-(v+jj4) / kk4))) + ll4
    htau =  (mm4 / (nn4*exp((v+oo4) / pp4) + qq4*exp(-(v+rr4) / ss4))) + tt4
}

PROCEDURE trates(v) {  :Computes rate and other constants at current v.
                      :Call once from HOC to initialize inf at resting v.
	LOCAL tinc
	TABLE minf, mexp, hinf, hexp
	DEPEND dt, celsius FROM -150 TO 150 WITH 300

	q10 = 3^((celsius - 20)/10) 
    rates(v)    
	tinc = -dt * q10
	mexp = 1 - exp(tinc/mtau)
	hexp = 1 - exp(tinc/htau)
	}


UNITSON

Loading data, please wait...