Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:236310
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
Reference:
1 . Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI (2018) Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 13:e0200626 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum spiny neuron;
Channel(s):
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Membrane Properties; Electrotonus; Synaptic-input statistic;
Implementer(s):
Search NeuronDB for information about:  AMPA;
/
GoodliffeEtAl2018
Syn
tau_tables
bkkca.mod
cadyn.mod *
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod *
car.mod
cat.mod
kaf.mod
kas.mod
kdr.mod
kir.mod *
krp.mod *
linearIclamp.mod
naf.mod
nap.mod
skkca.mod
stim.mod *
actionPotentialPlayer.hoc *
all_tau_vecs.hoc
analyticFunctions.hoc *
analyze_EPSC.m
aux_procs.hoc
baseline_values.txt
basic_procs.hoc
createFit_WTD1.m
electro_procs.hoc
fixnseg.hoc *
load_scripts.hoc
msp_template.hoc
PFC-V1_AddSynapses.hoc
PFC-V1_AddSynapses_fix.hoc
PFC-V1_AddSynapses_neg.hoc
PFC-V1_AddSynapses_negexp.hoc
plot_seClamp_i.ses
ran_test.hoc
randomepsc.hoc
ranstream.hoc
read_EPSCsims_mdb_alone.m
readcell.hoc
readNRNbin_Vclamp.m
                            
TITLE Krp (4ap resistant, persistent) current for nucleus accumbens

COMMENT

Nisenbaum ES, Wilson CJ, Foehring RC, Surmeier DJ (1996). Isolation and
characterization of a persistent potassium current in neostriatal neurons. J
Neurophys 76(2): 1180-1194.

Recorded at 22C - corrected to 35C with qfact 3

Jason Moyer 2004 - jtmoyer@seas.upenn.edu

ENDCOMMENT

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
}
 
NEURON {
        SUFFIX krp
        USEION k READ ek WRITE ik
        RANGE  gkbar, ik
}
 
PARAMETER {
	gkbar   =   0.002 (S/cm2)

	mvhalf = -13.5		(mV)	: Nisenbaum 1996, Fig 6C
	mslope = -11.8		(mV)	: Nisenbaum 1996, Fig 6C
	mshift = 0		(mV)

	hvhalf = -54.7		(mV)	: Nisenbaum 1996, Fig 9D
	hslope = 18.6		(mV)	: Nisenbaum 1996, Fig 9D
 	hshift = 0		(mV)

 	a = 0.7				: matched to Nisenbaum 1996, figure 9A (with qfact = 1)
 	qfact = 3.0
}
 
STATE { m h }
 
ASSIGNED {
	ek				(mV)
        v 				(mV)
        ik 				(mA/cm2)
        gk				(S/cm2)
        minf 
	hinf
    }
 
BREAKPOINT {
        SOLVE state METHOD cnexp
        gk = gkbar * m * (a*h + (1-a)) 
        ik = gk * ( v - ek )
}
 

 
INITIAL {
	rates(v)
	
	m = minf
	h = hinf
}

FUNCTION_TABLE taumkrp (v(mV))  (ms)
FUNCTION_TABLE tauhkrp (v(mV))  (ms)

DERIVATIVE state { 
        rates(v)
        m' = (minf - m) / (taumkrp(v)/qfact)
        h' = (hinf - h) / (tauhkrp(v)/qfact)
}
 
PROCEDURE rates(v (mV)) {  
	TABLE minf, hinf DEPEND mshift, hshift
		FROM -200 TO 200 WITH 201
			minf = 1 / (1 + exp( (v - mvhalf - mshift) / mslope ))
			hinf = 1 / (1 + exp( (v - hvhalf - hshift) / hslope ))
}
 
 

Loading data, please wait...