Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)

 Download zip file 
Help downloading and running models
Accession:237653
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
Reference:
1 . Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Molecular Network; Synapse; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia; Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway neuron; Neostriatum spiny neuron;
Channel(s): I A; I A, slow; I Calcium; I CAN; I K; I K,Ca; I K,leak; I Krp; I Na,t; I Potassium; I R; I T low threshold; Kir;
Gap Junctions:
Receptor(s): D1; Dopaminergic Receptor; AMPA; Gaba; NMDA;
Gene(s):
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Electrical-chemical; G-protein coupled; Membrane Properties; Neuromodulation; Multiscale; Synaptic noise;
Implementer(s): Lindroos, Robert [robert.lindroos at ki.se]; Du, Kai [kai.du at ki.se]; Keller, Daniel ; Kozlov, Alexander [akozlov at nada.kth.se];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway neuron; D1; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I T low threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Calcium; I Potassium; I A, slow; I Krp; I R; Kir; Dopamine; Gaba; Glutamate;
TITLE BK-type calcium activated K channel

UNITS {
    (molar) = (1/liter)
    (mV) = (millivolt)
    (mA) = (milliamp)
    (mM) = (millimolar)
    FARADAY = (faraday) (kilocoulombs)
    R = (k-mole) (joule/degC)
}

NEURON {
    SUFFIX bk
    USEION ca READ cai
    USEION k READ ek WRITE ik
    RANGE gbar, ik
}

PARAMETER {
    gbar = 0.0 (mho/cm2)
    k1 = 0.180 (mM)
    k4 = 0.011 (mM)
}

ASSIGNED {
    v (mV)
    ik (mA/cm2)
    celsius (degC)
    cai (mM) 
    ek (mV)
    oinf
    otau (ms)
}

STATE { o }

BREAKPOINT {
    SOLVE state METHOD cnexp
    ik = gbar*o*(v-ek)
}

DERIVATIVE state {
    rate(v, cai)
    o' = (oinf-o)/otau
}

INITIAL {
    rate(v, cai)
    o = oinf
}

PROCEDURE rate(v (mV), ca (mM)) {
    LOCAL a, b, sum, z
    UNITSOFF
    z = 1e-3*2*FARADAY/(R*(celsius+273.15))
    a = 0.48*ca/(ca+k1*exp(-0.84*z*v))
    b = 0.28/(1+ca/(k4*exp(-z*v)))
    sum = a+b
    oinf = a/sum
    otau = 1/sum
    UNITSON
}

COMMENT

Original model by Moczydlowski (1983), rat skeletal muscle.

Genesis implementation by De Schutter, adapted by Kai Du.

Revision by Evans (2012, 2013), K1 changed from 0.180 to 0.003 and K4
from 0.011 to 0.009, according to Berkefeld (2006), Xenopus oocytes.

NEURON implementation by Alexander Kozlov <akozlov@csc.kth.se>.

ENDCOMMENT

Loading data, please wait...