Striatal D1R medium spiny neuron, including a subcellular DA cascade (Lindroos et al 2018)

 Download zip file 
Help downloading and running models
We are investigating how dopaminergic modulation of single channels can be combined to make the D1R possitive MSN more excitable. We also connect multiple channels to substrates of a dopamine induced subcellular cascade to highlight that the classical pathway is too slow to explain DA induced kinetics in the subsecond range (Howe and Dombeck, 2016. doi: 10.1038/nature18942)
1 . Lindroos R, Dorst MC, Du K, Filipovic M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J (2018) Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 12:3 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Channel/Receptor; Dendrite; Molecular Network; Synapse; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia; Striatum;
Cell Type(s): Neostriatum medium spiny direct pathway GABA cell; Neostriatum spiny neuron;
Channel(s): I A; I A, slow; I Calcium; I CAN; I K; I K,Ca; I K,leak; I Krp; I Na,t; I Potassium; I R; I T low threshold; Kir;
Gap Junctions:
Receptor(s): D1; Dopaminergic Receptor; AMPA; Gaba; NMDA;
Transmitter(s): Dopamine; Gaba; Glutamate;
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Detailed Neuronal Models; Electrical-chemical; G-protein coupled; Membrane Properties; Neuromodulation; Multiscale; Synaptic noise;
Implementer(s): Lindroos, Robert [robert.lindroos at]; Du, Kai [kai.du at]; Keller, Daniel ; Kozlov, Alexander [akozlov at];
Search NeuronDB for information about:  Neostriatum medium spiny direct pathway GABA cell; D1; AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,t; I T low threshold; I A; I K; I K,leak; I K,Ca; I CAN; I Calcium; I Potassium; I A, slow; I Krp; I R; Kir; Dopamine; Gaba; Glutamate;
TITLE Q-type calcium current (Cav2.1)

    (mV) = (millivolt)
    (mA) = (milliamp)
    (S) = (siemens)
    (molar) = (1/liter)
    (mM) = (millimolar)
    FARADAY = (faraday) (coulomb)
    R = (k-mole) (joule/degC)

    SUFFIX caq
    USEION ca READ cai, cao WRITE ica VALENCE 2
    RANGE pbar, ica

    pbar = 0.0 (cm/s)
    :q = 1	: room temperature 22 C
    q = 3	: body temperature 35 C

    v (mV)
    ica (mA/cm2)
    eca (mV)
    celsius (degC)
    cai (mM)
    cao (mM)
    mtau (ms)

STATE { m }

    SOLVE states METHOD cnexp
    ica = pbar*m*m*ghk(v, cai, cao)

    m = minf

DERIVATIVE states { 
    m' = (minf-m)/mtau*q

PROCEDURE rates() {
    minf = 1/(1+exp((v-(-16.3))/(-7.9)))
    mtau = 1.13*2

FUNCTION ghk(v (mV), ci (mM), co (mM)) (.001 coul/cm3) {
    LOCAL z, eci, eco
    z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
    if(z == 0) {
        z = z+1e-6
    eco = co*(z)/(exp(z)-1)
    eci = ci*(-z)/(exp(-z)-1)
    ghk = (1e-3)*2*FARADAY*(eci-eco)


Activation curve was reconstructed for cultured NAc neurons from P5-P32
Charles River rat pups [1].  Activation time constant was measured in
culture neurons from cerebellum of P2-P5 rat pups [2] at room temperature
22 C.

Original NEURON model by Wolf (2005) [3] was modified by Alexander Kozlov
<>. Activation curve was fitted to m2 kinetics [4],
activation time constant was scaled up as well.

[1] Churchill D, Macvicar BA (1998) Biophysical and pharmacological
characterization of voltage-dependent Ca2+ channels in neurons isolated
from rat nucleus accumbens. J Neurophysiol 79(2):635-47.

[2] Randall A, Tsien RW (1995) Pharmacological dissection of multiple
types of Ca2+ channel currents in rat cerebellar granule neurons. J
Neurosci 15(4):2995-3012.

[3] Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M,
O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions
and entrainment to oscillations in a computational model of the nucleus
accumbens medium spiny projection neuron. J Neurosci 25(40):9080-95.

[4] Brown AM, Schwindt PC, Crill WE (1993) Voltage dependence and
activation kinetics of pharmacologically defined components of the
high-threshold calcium current in rat neocortical neurons. J Neurophysiol


Loading data, please wait...